On the birational invariants k and genus of algebraic plane curves

Shigeru IITAKA
Gakushuin University,Tokyo

December 15, 2012

Contents

1 Introduction 2
1.1 minimal models 4
2 basic results 5
2.1 two invariants 6
2.2 invariant $\widetilde{\mathcal{Z}}$ 7
2.3 case in which $B \geq 3$ 7
3 estimate of k in terms of ω 8
3.1 the invariant i 9
3.2 case when $k=\omega$ 9
3.3 a formula for i 10
3.4 case in which $i=0$ 10
4 formula (FEQ) 12
5 case when $j_{1}=j_{2}=0$ 13
5.1 case when $g=0$ 13
5.1.1 case when $i=1$ 13
5.1.2 case when $i=2$ 15
5.2 case when $g=1$ 18
5.2.1 case when $i=1$ 18
5.2.2 case when $i=2$ 18
5.3 case when $g=2$ 20
5.4 case when $g>2$ 21
6 case when $j_{1}=1, j_{2}=0$ 22
6.1 case when $\bar{g} \geq 1$ 22
6.2 case when $g=0$ 23
6.2.1 case when $i=1$ 23
6.3 case when $i=2$ 23
6.4 case when $g=1$ 25
7 case when $j_{1}=2, j_{2}=0$ 26
7.1 case when $\bar{g} \geq 0$ 26
7.2 case when $g=0$ 27
8 case when $j_{1}=0, j_{2}=1$ or $t_{2}=1$ 27
8.1 case when $g>0$ 28
8.2 case when $g=0$ 28
9 case when $\widetilde{\mathcal{Z}} \geq 3\left(\nu_{1}-3\right)$ 30
9.1 case when $\nu_{1} \geq 4$ 31
9.2 case when $\nu_{1}=3$ 33
10 case when $\widetilde{\mathcal{Z}}<3\left(\nu_{1}-3\right)$ 33
11 estimate of genus in terms of ω 34
12 another estimate 34
12.1 computation of $\widetilde{F}(n)_{0}$ 35
12.2 case when $n=4$ 36
12.3 case in which $3 \omega<\bar{g}$ 37
13 bibliography 42

1 Introduction

Here, we shall study birational properties of algebraic plane curves from the viewpoint of Cremonian geometry. As a matter of fact, let S be a nonsingular rational surface and D a nonsingular curve on $S .(S, D)$ are called pairs and we study such pairs. The purpose of Cremonian geometry is the study of birational properties of pairs (S, D).

Suppose that $m \geq a \geq 1$. Then $P_{m, a}[D]=\operatorname{dim}\left|m K_{S}+a D\right|+1$ are called mixed plurigenera, which depend on S and D. It is my understanding that these invariants embody the essential geometric properties of the curve D on $S . P_{1,1}[D]$ turns out to be the genus of D, denoted by g.

Letting Z stand for $K_{S}+D$, we see $P_{m, m}[D]=\operatorname{dim}|m Z|+1$, called logarithmic plurigenera of $S-D$, from which logarithmic Kodaira dimension is introduced, denoted by $\kappa[D]$.

Assume that $\kappa[D]=2$ and that there exist no (-1) curves E such that $E \cdot D \leq 1$. Then such pairs are proved to be minimal in the birational geometry of pairs ([7],[6]).

We start with recalling some basic results in birational geometry of pairs (S, D).

Minimal pairs are obtained from some kind of singular models, namely, \# minimal pairs which will be defined below. Any nontrivial $\mathbf{P}^{1}-$ bundle over \mathbf{P}^{1} has a section Δ_{∞} with negative self intersection number, which is denoted by a symbol Σ_{B}, where $-B=\Delta_{\infty}{ }^{2}$ if $B>0 . \Sigma_{B}$ is said to be a Hirzebruch surface of degree B after Kodaira.

Let Σ_{0} denote the product of two projective lines.
The Picard group of Σ_{B} is generated by a section Δ_{∞} and a fiber $F_{c}=p r^{-1}(c)$ of the $\mathbf{P}^{1}-$ bundle, where $c \in \mathbf{P}^{1}$ and $p r: \Sigma_{B} \rightarrow \mathbf{P}^{1}$ is the projection.

Let C be an irreducible curve on Σ_{B}. Then $C \sim \sigma \Delta_{\infty}+e F_{c}$, for some integers σ and e. Here the symbol \sim means the linear equivalence between divisors. We have $C \cdot F_{c}=\sigma$ and $C \cdot \Delta_{\infty}=e-B \cdot \sigma$.

Note that $\kappa\left[\Delta_{\infty}\right]=-\infty$.
Hereafter, suppose that $C \neq \Delta_{\infty}$. Thus $C \cdot \Delta_{\infty}=e-B \cdot \sigma \geq 0$ and hence, $e \geq B \sigma$. Denoting $2 e-B \sigma$ by \widetilde{B}, we have the formula of the virtual genus of C denoted by g_{0} :

$$
g_{0}=\frac{(\sigma-1)(\widetilde{B}-2)}{2}
$$

Thus introducing τ_{m} by

$$
\begin{equation*}
\tau_{m}=(\sigma-m)(\widetilde{B}-2 m) \tag{1}
\end{equation*}
$$

we obtain

$$
\left(K_{0}+C\right)^{2}=\tau_{2}
$$

where K_{0} denotes a canonical divisor on Σ_{B}.
Moreover, letting Z_{0} be $K_{0}+C$, we obtain for $\nu>0$,

$$
\begin{gathered}
\nu Z_{0}-(\nu-1) C \sim C+\nu K_{0} \\
\left(\nu Z_{0}-(\nu-1) C\right) \cdot Z_{0}=\tau_{\nu+1}-2(\nu-1)^{2}
\end{gathered}
$$

and

$$
\left(\nu Z_{0}-(\nu-1) C\right) \cdot C=\tau_{\nu}-2 \nu^{2}
$$

1.1 minimal models

Let C be an irreducible curve on Σ_{B}. Then by $\nu_{1}, \nu_{2}, \cdots, \nu_{r}$ we denote the multiplicities of all singular points (including infinitely near singular points)

The symbol $\left[\sigma * e, B ; \nu_{1}, \nu_{2}, \cdots, \nu_{r}\right]$ is said to be the type of $\left(\Sigma_{B}, C\right)$. When $B=0$,the symbol is abbreviated as $\left[\sigma * e ; \nu_{1}, \nu_{2}, \cdots, \nu_{r}\right]$.

Definition 1 The pair $\left(\Sigma_{B}, C\right)$ is said to be \# minimal, if

- $\sigma \geq 2 \nu_{1}$ and $e-\sigma \geq B \nu_{1}$.
- Moreover, if $B=1$ and $r=0$ then assume $e-\sigma>1$.

Using elementary transformations, we get
Theorem 1 If D is not transformed into a line on \mathbf{P}^{2} by Cremona transformations, then $\kappa[D] \geq 0$. In this case, a minimal pair (S, D) is obtained
from a \# minimal pair $\left(\Sigma_{B}, C\right)$ by shortest resolution of singularities of C using blowing ups except for $(S, D)=\left(\mathbf{P}^{2}, C_{d}\right), C_{d}$ being a nonsingular curve of degree $d>2$.

Theorem 2 If (S, D) is obtained from a \# minimal pair $\left(\Sigma_{B}, C\right)$ by shortest resolution of singularities of C, then (S, D) is relatively minimal. In other words,for any (-1) curve Γ on $S, \Gamma \cdot \Delta \geq 2$.

2 basic results

Suppose that (S, D) is a minimal pair with $\kappa[D]=2$, which is obtained from a \# minimal pair(model) $\left(\Sigma_{B}, C\right)$ by shortest resolution of singularities of C. The type of $\left(\Sigma_{B}, C\right)$ is denoted by the symbol $\left[\sigma * e, B ; \nu_{1}, \nu_{2}, \cdots, \nu_{r}\right]$.

By

$$
2 \omega=\left(D+3 K_{S}\right) \cdot D, 2 \omega_{0}=\left(C+3 K_{0}\right) \cdot C
$$

and

$$
2 \bar{g}=\left(D+K_{S}\right) \cdot D, 2 \bar{g}_{0}=\left(C+K_{0}\right) \cdot C
$$

we get

- $\omega=\omega_{0}-\sum_{j=1}^{r} \frac{\nu_{j}\left(\nu_{j}-3\right)}{2}$,
- $g=g_{0}-\sum_{j=1}^{r} \frac{\nu_{j}\left(\nu_{j}-1\right)}{2}$.

By putting $X=\sum_{j=1}^{r} \nu_{j}^{2}$ and $Y=\sum_{j=1}^{r} \nu_{j}$, we obtain

- $2 \omega-2 \omega_{0}=-X+3 Y$,
- $2 g-g_{0}=-X+Y$.

Thus

- $X=3 g_{0}-\omega_{0}-3 g+\omega$,
- $Y=g_{0}-\omega_{0}-g+\omega$.

However, from $\omega_{0}=\frac{\tau_{3}}{2}-9$ and $\overline{g_{0}}=g_{0}-1=\frac{\tau_{1}}{2}-1$, it follows that

- $\overline{g_{0}}-\omega_{0}=\widetilde{B}+2 \sigma$,
- $3 \overline{g_{0}}-\omega_{0}=\widetilde{B} \sigma$.

Consequently we obtain the next equalities:

- $Y=\widetilde{B}+2 \sigma+\omega-\bar{g}$,
- $X=\widetilde{B} \sigma+\omega-3 \bar{g}$.

2.1 two invariants

We shall compute two invariants $\widetilde{B}+2 \sigma$ and $\widetilde{B} \sigma$ by examining the following cases according to the value of B.
(1) $B=0$. Then $\sigma=2 \nu_{1}+p, e=\sigma+u$ for some $u \geq 0$ and

- $\widetilde{B}+2 \sigma=8 \nu_{1}+4 p+2 u$,
- $\widetilde{B} \sigma=8 \nu_{1}^{2}+2 \nu_{1}(4 p+2 u)+2 p u+2 p^{2}$.
(2) case $B=1$. Then $\sigma=2 \nu_{1}+p, e=\sigma+\nu_{1}+u$ for some $u \geq 0$ and
- $\widetilde{B}+2 \sigma=8 \nu_{1}+3 p+2 u$,
- $\widetilde{B} \sigma=8 \nu_{1}^{2}+2 \nu_{1}(3 p+2 u)+2 p u+p^{2}$.
(3) $B=2$. Then $\sigma=2 \nu_{1}+p, e=2 \sigma+u$ for some $u \geq 0$ and
- $\widetilde{B}+2 \sigma=8 \nu_{1}+4 p+2 u$,
- $\widetilde{B} \sigma=8 \nu_{1}^{2}+2 \nu_{1}(4 p+2 u)+2 p u+2 p^{2}$.

Defining $w=4-\delta_{1 B}$, we get $w=4$ if $B \neq 1$. Further, $w=3$ if $B=1$. Introducing an invariant k by $k=w p+2 u$, we have

- $\widetilde{B}+2 \sigma=8 \nu_{1}+k$,
- $\widetilde{B} \sigma=8 \nu_{1}^{2}+2 k \nu_{1}+p(k-2 p)$.

Proposition 1 Suppose that $B \leq 2$. Letting k denote $w p+2 u$, w being $4-\delta_{1 B}$, we have the following fundamental equalities:

- $X=8 \nu_{1}^{2}+2 k \nu_{1}+\tilde{k}+\omega_{1}-2 \bar{g}$,
- $Y=8 \nu_{1}+k+\omega_{1}$.

Here $\tilde{k}=k p-2 p^{2}, \omega_{1}=\omega-\bar{g}$.

2.2 invariant $\widetilde{\mathcal{Z}}$

Following Matsuda([13]), we shall compute $\nu_{1} Y-X$, which we denote by $\widetilde{\mathcal{Z}}$.

By $\widetilde{\mathcal{Z}}=\nu_{1} Y-X=\sum_{j=1}^{r} \nu_{j}\left(\nu_{1}-\nu_{j}\right) \geq 0$, we have

$$
\begin{equation*}
0 \leq \widetilde{\mathcal{Z}}=\nu_{1}(\omega-\bar{g}-k)-\tilde{k}-\omega_{1}+2 \bar{g} \tag{2}
\end{equation*}
$$

2.3 case in which $B \geq 3$

By B_{2} we denote $\max \{B-2,0\}$. Then $e=B \sigma+u=B_{2} \sigma+2 \sigma+u$ for some $u \geq 0$ and $\widetilde{B}=2 e-B \sigma=B_{2} \sigma+2(\sigma+u)$.

Moreover, $\widetilde{B} \sigma=B_{2} \sigma^{2}+2(\sigma+u) \sigma$ and so

- $\widetilde{B}+2 \sigma=B_{2} \sigma+8 \nu_{1}+k$,
- $\widetilde{B} \sigma=B_{2} \sigma^{2}+8 \nu_{1}^{2}+2 k \nu_{1}+\tilde{k}$.

However, these formulas still hold for any $B \geq 0$. Thus, we obtain the following fundamental equalities:

- $X=B_{2} \sigma^{2}+8 \nu_{1}^{2}+2 k \nu_{1}+\tilde{k}+\omega_{1}-2 \bar{g}$,
- $Y=B_{2} \sigma+8 \nu_{1}+k+\omega_{1}$.

Further, we get

$$
0 \leq \widetilde{\mathcal{Z}}=B_{2} \sigma\left(\nu_{1}-\sigma\right)-k \nu_{1}+\left(\nu_{1}-1\right) \omega_{1}+2 \bar{g}-\tilde{k}
$$

and

$$
B_{2} \sigma\left(\sigma-\nu_{1}\right) \leq-k \nu_{1}+\left(\nu_{1}-1\right) \omega_{1}+2 \bar{g}-\tilde{k}
$$

If $B \geq 3$, then

$$
\begin{equation*}
\sigma\left(\sigma-\nu_{1}\right) \leq B_{2} \sigma\left(\sigma-\nu_{1}\right) \leq-k \nu_{1}+\left(\nu_{1}-1\right) \omega_{1}+2 \bar{g}-\tilde{k} \tag{3}
\end{equation*}
$$

Hence, the following is derived:
Proposition 2 If $B \geq 3$, then

$$
2 \nu_{1}^{2} \leq \sigma\left(\sigma-\nu_{1}\right) \leq\left(\nu_{1}-1\right) \omega_{1}+2 \bar{g}
$$

3 estimate of k in terms of ω

We shall prove the following estimate of k.
Proposition 3 If $\sigma \geq 7$ and $\nu_{1} \geq 3$, then $k \leq \omega$. Moreover, if $g>0$, then $k \leq \omega-1$. Assume $k=\omega$. Then types are as follows:

In the case where $p=0$, the type becomes $\left[10 * 11 ; 5^{9}\right]$ or its associates.
In the case where $p=1$, the type becomes either 1$)[(4 k+3) *(6 k+u+$ $\left.4), 1 ;(2 k+1)^{9}\right]$, where $k=3+2 u, u \geq 0$, or 2) $\left[(19+8 u) *(19+9 u) ;(9+4 u)^{9}\right]$, where $u \geq 0$

In the case where $p>1, p=2$ and the type becomes $\left[28 * 41,1 ; 13^{9}\right]$.

Proof.

First, we shall prove $k \leq \omega$. From the following fundamental equalities: we see that $\widetilde{\mathcal{Z}}=\nu_{1} Y-X \geq 0$ satisfies

$$
0 \leq \widetilde{\mathcal{Z}}=B_{2}\left(\nu_{1}-\sigma\right) \sigma-k \nu_{1}-\tilde{k}+\left(\nu_{1}-1\right) \omega-\left(\nu_{1}-3\right) \bar{g},
$$

and hence

$$
\begin{aligned}
0 \leq B_{2}\left(\sigma-\nu_{1}\right) \sigma & \leq-k \nu_{1}-\tilde{k}+\left(\nu_{1}-1\right) \omega-\left(\nu_{1}-3\right) \bar{g} \\
& \leq-k \nu_{1}+\nu_{1} \omega-\omega+\bar{g}\left(3-\nu_{1}\right) .
\end{aligned}
$$

Thus when $\bar{g} \geq 0$, we get

$$
k \nu_{1} \leq \nu_{1} \omega-\omega .
$$

Hence,

$$
k \leq \omega-\frac{\omega}{\nu_{1}}<\omega .
$$

However, when $\bar{g}=-1$, we get

$$
k \nu_{1} \leq \nu_{1} \omega-\omega+\nu_{1}-3 .
$$

Hence,

$$
k-\omega \leq 1-\frac{3+\omega}{\nu_{1}}<1 .
$$

Therefore, $k \leq \omega$,since $k-\omega$ is an integer.

3.1 the invariant i

Assume $\nu_{1} \geq 3$. Introducing an invariant i by $i=\omega-k \geq 0$. we shall enumerate types whenever $i \leq 2$.

First, we shall prove that $B \leq 2$. Otherwise, we have $B_{2}>0$ and so

$$
B_{2}\left(\sigma-\nu_{1}\right) \sigma \geq 2 \nu_{1}^{2} \geq 6 \nu_{1}
$$

From

$$
\begin{aligned}
6 \nu_{1} \leq B_{2}\left(\sigma-\nu_{1}\right) \sigma & \leq-k \nu_{1}-\tilde{k}+\left(\nu_{1}-1\right) \omega-\left(\nu_{1}-3\right) \bar{g} \\
& \leq-k \nu_{1}-\tilde{k}+\left(\nu_{1}-1\right) \omega+\nu_{1}-3 \\
& =(\omega-k+1) \nu_{1}-\tilde{k}-\omega-3 \\
& =(i+1) \nu_{1}-\tilde{k}-k+i-3 \\
& \leq(i+1) \nu_{1}+i-3
\end{aligned}
$$

it follows that

$$
5 \nu_{1}+3 \leq i\left(\nu_{1}+1\right)
$$

Hence,

$$
4 \leq \frac{5 \nu_{1}+3}{\nu_{1}+1} \leq i
$$

This contradicts the hypothesis saying $i \leq 2$.

3.2 case when $k=\omega$

Assume $i=0$, i.e. $k=\omega$ and by the previous argument, $\bar{g}=-1$.
Supposing that $\widetilde{Z}>0$, we get $\widetilde{Z} \geq \nu_{1}-1$. Hence,

$$
\begin{aligned}
\nu_{1}-1 \leq \widetilde{\mathcal{Z}} & \leq-k \nu_{1}+\left(\nu_{1}-1\right) k+\bar{g}\left(3-\nu_{1}\right)-\tilde{k} \\
& =-k-\left(3-\nu_{1}\right)-\tilde{k} \\
& \leq \nu_{1}-3
\end{aligned}
$$

Thus $\nu_{1}-1 \leq \nu_{1}-3$, which is a contradiction. Therefore, $\widetilde{Z}=0$.

3.3 a formula for i

In general, in the case when $B \leq 2, \bar{g}=-1$ and $\widetilde{Z}=0$, we obtain the following formulae from the fundamental equalities :

- $\omega_{1}=i+1+k$,
- $(r-8) \nu_{1}=k+\omega_{1}=2 k+i+1$,
- $(r-8) \nu_{1}^{2}=2 k \nu_{1}+\omega_{1}+\tilde{k}+2=2 k \nu_{1}+\tilde{k}+i+k+3$.

Then $r \geq 9$ and

$$
\begin{equation*}
\nu_{1}=\frac{2 k+i+1}{r-8} . \tag{4}
\end{equation*}
$$

Introducing ρ by $\rho=r-8$, these are rewritten as follows:

1. $\rho \nu_{1}=k+\omega_{1}=2 k+i+1$,
2. $\rho \nu_{1}^{2}=2 k \nu_{1}+\omega_{1}+\tilde{k}+2=2 k \nu_{1}+\tilde{k}+i+k+3$,
3. $\rho=r-8 \geq 1$,
4. $\rho \nu_{1}=2 k+i+1$.

Thus, the formulae (1) and (2) yield

$$
(i+1) \rho \nu_{1}=\rho(\tilde{k}+i+k+3)
$$

By (1) we obtain

$$
\begin{equation*}
(i+1)(2 k+i+1)=\rho(\tilde{k}+i+k+3) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
k(2 i+2-\rho)+(i+1)^{2}=\rho(\tilde{k}+i+3) . \tag{6}
\end{equation*}
$$

3.4 case in which $i=0$

Suppose that $i=0$. From the formula (6), it follows that

$$
k(2-\rho)+1=\tilde{k}+3
$$

Hence, $\rho=1 ; r=9$ and $k+1=\tilde{k}+3 ; k=\tilde{k}+2$.

Therefore, from $k=\tilde{k}+2=p(k-2 p)+2$, it follows that

$$
2 p^{2}-2=k(p-1) .
$$

Hence, we get either 1) $p=1$ or 2) $p \neq 1 ; k=2 p+2$.
In the case when $p=1$, we have $\nu_{1}=2 k+1$ and $k=w+2 u$, where $w=4-\delta_{1 B}$.

If $B=1$ then $k=3+2 u$ and $\sigma=2 \nu_{1}+p=4 k+3 ; e=\sigma+\nu_{1}+u=$ $6 k+u+4$. Thus the type becomes $\left[(4 k+3) *(6 k+u+4), 1 ;(2 k+1)^{9}\right]$, where $k=3+2 u$.

Conversely, if the minimal pair (S, D) has this type, then
$g=\frac{(\sigma-1)(\widetilde{B}-2)}{2}-9(2 k+1) k=0$ and $D^{2}=\sigma \widetilde{B}-9(2 k+1)^{2}=-k-3$. Thus $\omega=-3-(-k-3)=k$.

If $B=0$ then $k=4+2 u$ and $\nu_{1}=2 k+1=9+4 u, \sigma=2 \nu_{1}+p=$ $4 k+3=19+8 u$. Thus $e=\sigma+u=19+9 u$ and the type becomes $\left[(19+8 u) *(19+9 u) ;(9+4 u)^{9}\right]$.

Conversely, if the minimal pair (S, D) has this type, then $g=0$ and $\omega=4+2 u=k$.

In the case when $k=2 p+2$ and $p \neq 1$, we have either $p=0$ or $p>1$.
If $p=0$ then $u=1$ and $k=2$. Thus $\nu_{1}=2 k+1=5, \sigma=10$ and $B \leq 2$.
If $B=0$ then the type becomes $\left[10 * 11 ; 5^{9}\right]$.
If $B=1$ then the type becomes $\left[10 * 16,1 ; 5^{9}\right]$.
If $B=2$ then the type becomes $\left[10 * 21,2 ; 5^{9}\right]$ or its associates.
Note: The types $\left[10 * 16,1 ; 5^{9}\right]$ and $\left[10 * 21,2 ; 5^{9}\right]$ are said to be the associates of the type $\left[10 * 11 ; 5^{9}\right]$. Hereafter, such associates will be omitted, for simplicity.

If $p>1$ then $k=2 p+2=w p+2 u$, from which it follows that $p=2, u=$ $0, w=3, k=6$ and $B=1$.

Moreover, $\nu_{1}=2 k+1=13$ and $\sigma=28$ and $e=41$. Hence, the type becomes [$\left.28 * 41,1 ; 13^{9}\right]$.

Conversely, if the minimal pair (S, D) has this type, then $g=0$ and $D^{2}=-9$ and $\omega=6=k$.

Therefore, the proof of Proposition 1 is complete. In that follows we shall enumerate all possible types whenever $i=1$ or 2 .

4 formula (FEQ)

Suppose that $B \leq 2$ and that a $\#-$ minimal pair $\left(\Sigma_{B}, C\right)$ has j_{1} singular points with multiplicity $\nu_{1}-1$ and j_{2} singular points with multiplicity $\nu_{1}-2$. Moreover, assume that the other singular points have the multiplicity ν_{1}. Then

- $Y=\nu_{1}\left(r-j_{1}-j_{2}\right)+j_{1}\left(\nu_{1}-1\right)+j_{2}\left(\nu_{1}-2\right)=r \nu_{1}-j_{1}-2 j_{2}$,
- $X=\nu_{1}^{2}\left(r-j_{1}-j_{2}\right)+j_{1}\left(\nu_{1}-1\right)^{2}+j_{2}\left(\nu_{1}-2\right)^{2}=r \nu_{1}^{2}-2 j_{1} \nu_{1}-4 j_{2} \nu_{1}+$ $j_{1}+4 j_{2}$.

From the fundamental equalities, we obtain

$$
\begin{aligned}
\rho \nu_{1} & =j_{1}+2 j_{2}+k+\omega_{1} \\
& =j_{1}+2 j_{2}+2 k+i-\bar{g}
\end{aligned}
$$

and

$$
\begin{aligned}
\rho \nu_{1}^{2} & =2 j_{1} \nu_{1}+4 j_{2}-j_{1}-4 j_{2}+2 k \nu_{1}+\tilde{k}+k+i-3 \bar{g} \\
& =j_{1}+2 j_{2}+k+\omega-\bar{g}+\tilde{k}+\omega_{1}-2 \bar{g}
\end{aligned}
$$

But from

$$
\rho \nu_{1}^{2}=\left(j_{1}+2 j_{2}+2 k+i-\bar{g}\right) \nu_{1}
$$

it follows that

$$
k\left(2 i-2 j_{1}-4 j_{2}-2 \bar{g}-\rho\right)+(\bar{g}-i)^{2}-\left(j_{1}+2 j_{2}\right)^{2}=\rho\left(\tilde{k}+i-3 \bar{g}-j_{1}-4 j_{2}\right)
$$

This will be referred to as the formula (FEQ).
Proposition 4 When $B \leq 2$ and a\#- minimal pair $\left(\Sigma_{B}, C\right)$ has j_{1} singular points with multiplicity $\nu_{1}-1$ and j_{2} singular points with multiplicity $\nu_{1}-2$, and the other singular points have the multiplicity ν_{1}, the next equalities hold.

$$
\begin{equation*}
k\left(2 i-2 j_{1}-4 j_{2}-2 \bar{g}-\rho\right)+(\bar{g}-i)^{2}-\left(j_{1}+2 j_{2}\right)^{2}=\rho\left(\tilde{k}+i-3 \bar{g}-j_{1}-4 j_{2}\right) \tag{8}
\end{equation*}
$$

and

$$
\rho \nu_{1}=j_{1}+2 j_{2}+2 k+i-\bar{g} .
$$

5 case when $j_{1}=j_{2}=0$

Assuming $j_{1}=j_{2}=0$, we have from (FEQ) the next equality:

$$
k(2 i-2 \bar{g}-\rho)+(\bar{g}-i)^{2}=\rho(\tilde{k}+i-3 \bar{g}) .
$$

5.1 case when $g=0$

Suppose that $g=0$. Then

$$
k(2 i+2-\rho)+(1+i)^{2}=\rho(\tilde{k}+i+3)
$$

and

$$
\rho \nu_{1}=2 k+i+1 .
$$

We shall study the types when $i=1,2$.

5.1.1 case when $i=1$

If $i=1$ then the formula (FEQ) turns out to be

$$
k(4-\rho)+4=\rho(\tilde{k}+4) .
$$

Then $\rho=1$ or 2 or 3 .
i) Suppose that $\rho=1$. Then $3 k+4=\tilde{k}+4$. Hence,

$$
3 k=\tilde{k}=p(k-2 p) .
$$

From $2 p^{2}=(p-3) k$, it follows that

$$
2(p+3)+\frac{18}{p-3}=k \geq 3 p .
$$

We obtain the next table.

Table 1: case when $g=0, i=1, \rho=1, B=1$

$p-3$	p	$2(p+3)$	$18 /(p-3)$	k	ν_{1}	σ	e	$3 p$	u
1	4	14	18	32	66	136	212	12	10
2	5	16	9	25	52	109	166	15	5
3	6	18	6	24	50	106	159	18	3
6	9	24	3	27	56	121	177	27	0

Conversely, if the type of the pair (S, D) is $\left[136 * 212,1 ; 66^{9}\right]$, then $g=$ $0, \omega=33, k=32$.

If the type of the pair is $\left[109 * 166,1 ; 52^{9}\right]$, then $g=0, \omega=26, k=25$.
If the type of the pair is $\left[106 * 159,1 ; 50^{9}\right]$, then $g=0, \omega=25, k=24$.
If the type of the pair is $\left[121 * 177,1 ; 56^{9}\right]$, then $g=0, \omega=28, k=27$.

Table 2: case when $g=0, i=1, \rho=1, B=0$

$p-3$	p	$2(p+3)$	$18 /(p-3)$	k	ν_{1}	σ	e	$4 p$	u
1	4	14	18	32	66	136	144	16	8
3	6	18	6	24	50	106	106	24	0

Conversely, if the type of the pair (S, D) is $\left[136 * 144 ; 66^{9}\right]$, then $g=$ $0, \omega=33, k=32, Z^{2}=31$.

If the type of the pair (S, D) is $\left[106 * 106,1 ; 50^{9}\right]$, then $g=0, \omega=25, k=$ 24.
ii) Suppose that $\rho=2$. Thus $\nu_{1}=k+1, k+2=\tilde{k}+4$. Hence,

$$
2 p^{2}-2=(p-1) k
$$

a) If $p \neq 1$ then $2 p+2=k=w p+2 u$, where $w=3$ or 4 .

If $B=1$, we obtain $p=2, k=6, u=0, \nu_{1}=7$. Then $\sigma=2 \nu_{1}+p=$ $16, e=16+7=23$. Thus the type is $\left[16 * 23,1 ; 7^{10}\right]$. Conversely, if the type is this, then $\omega=7, g=0, k=6$.

If $B=0$, we obtain $p=0, k=2, u=1$. Thus, $2 \nu_{1}=\rho \nu_{1}=2 k+i-\bar{g}=$ $5-\bar{g} \leq 6$. Hence, $\nu_{1}=3, \sigma=6$. But $\sigma \geq 7$ was assumed.
b) If $p=1$ then $\tilde{k}=k-2$. But $B=1$ or $B=0$.

If $B=1$, then $k=3+2 u ; \nu_{1}=k+1, \sigma=2 \nu_{1}+p=9+4 u, e=13+7 u$. Thus the type is $\left[(9+4 u) *(13+7 u), 1 ;(4+2 u)^{10}\right]$.

Conversely, if the pair has this type, then $\omega=4+2 u, g=0$ and $k=$ $3+2 u$.

If $B=0$, then $k=4+2 u ; \nu_{1}=k+1=5+2 u, \sigma=2 \nu_{1}+p=11+4 u, e=$ $11+5 u$. Thus the type is $\left[(11+4 u) *(11+5 u) ;(5+2 u)^{10}\right]$.

Conversely, if the pair has this type, then $\omega=5+2 u, g=0$ and $k=$ $4+2 u$.
iii) Suppose that $\rho=3$. Then $3 \tilde{k}=k-8$ and

$$
k-8=3 \tilde{k}=3(p(k-2 p))
$$

Hence,

$$
6 p^{2}-8=(3 p-1) k \geq 3 p(3 p-1)=9 p^{2}-3 p
$$

From this it follows that

$$
3 p-6 \geq 3 p-8 \geq 3 p^{2}
$$

Hence, $p-2 \geq p^{2}$. This is a contradiction.

5.1.2 case when $i=2$

If $i=2$ then the formula (FEQ) turns out to be

$$
k(6-\rho)+9=\rho(\tilde{k}+5)
$$

Since $\tilde{k}=p(k-2 p)$, it follows that

$$
k(p \rho+\rho-6)=2 p^{2} \rho-5 \rho+9
$$

But recalling $k=w p+2 u \geq 3 p$, we obtain

$$
2 p^{2} \rho-5 \rho+9=k(p \rho+\rho-6) \geq 3 p(p \rho+\rho-6)=3 p^{2} \rho+3 p(\rho-6)
$$

Thus

$$
-5 \rho+9-3 p(\rho-6) \geq p^{2} \rho
$$

Hence,

$$
9+18 p \geq \rho\left(p^{2}+3 p+5\right)
$$

and

$$
\begin{equation*}
\frac{9+18 p}{p^{2}+3 p+5} \geq \rho \tag{9}
\end{equation*}
$$

Therefore,

- if $p \leq 2$ then $\rho \leq 3$;
- if $3 \leq p \leq 5$ then $\rho \leq 2$;
- if $6 \leq p$ then $\rho=1$.

Hence, $\rho \leq 3$.
i) Assume that $\rho=1$. Then $r=9$ and $\tilde{k}+5=5 k+9$. From $\tilde{k}=p(k-2 p)$, it follows that

$$
\begin{equation*}
2 p^{2}+4=k(p-5) \tag{10}
\end{equation*}
$$

Then $p>5$ and we obtain

$$
\begin{equation*}
2(p+5)+\frac{54}{p-5}=k \tag{11}
\end{equation*}
$$

Then the following two tables are gotten.

Table 3: $g=0, i=2, B=1$

$p-5$	p	$2(p+5)$	$54 /(p-5)$	k	ν_{1}	σ	e	$3 p$	u
1	6	22	54	76	155	316	500	18	29
2	7	24	27	51	105	217	337	21	15
3	8	26	18	44	91	190	291	24	10
6	11	32	9	41	85	181	270	33	4
9	14	38	6	44	91	196	288	42	1

Conversely, if the type is $\left[316 * 500,1 ; 155^{9}\right]$, then $g=0, \omega=78, k=76$.
If the type is $\left[217 * 337,1 ; 105^{9}\right]$, then $g=0, \omega=53, k=51$.
If the type is $\left[190 * 291,1 ; 91^{9}\right]$, then $g=0, \omega=46, k=44$.
If the type is $\left[181 * 270,1 ; 85^{9}\right]$, then $g=0, \omega=43, k=41$.
If the type is $\left[196 * 288,1 ; 91^{9}\right]$, then $g=0, \omega=46, k=44$.

Table 4: $g=0, i=2, B=0$

$p-5$	p	$2(p+5)$	$54 /(p-5)$	k	ν_{1}	σ	e	$4 p$	u
1	6	22	54	76	155	316	342	24	26
3	8	26	18	44	91	190	196	32	6

Conversely, if the type is $\left[316 * 342 ; 155^{9}\right]$, then $g=0, \omega=78, k=76, Z^{2}=$ 76.

If the type is $\left[190 * 196 ; 91^{9}\right]$, then $g=0, \omega=46, k=44, Z^{2}=44$.
ii) Assume that $\rho=2$. Then

$$
4 k+9=2(\tilde{k}+5)
$$

Thus $9=2(\tilde{k}+5)-4 k$, which is a contradiction.
iii) Assume that $\rho=3$. Then $k+3=\tilde{k}+5$; hence, $k=\tilde{k}+2$ and

$$
3 \nu_{1}=\rho \nu_{1}=2 k+i+1=2 k+3
$$

Then $k=\tilde{k}+2=p(k-2 p)$. ;thus, $(p-1) k=2\left(p^{2}-1\right)$.
a).If $p=1$ then $\tilde{k}=k-2$ and so $k=w+2 u$, where $w=3$ or 4 .

If $B=1$ then $w=3, k=3+2 u$ and

$$
3 \nu_{1}=\rho \nu_{1}=2 k+i+1=2 k+3=9+4 u
$$

From $3\left(\nu_{1}-3\right)=4 u$, it follows that $\nu_{1}-3=4 L, u=3 L$, for some L.
Then $\sigma=8 L+7, e=15 L+10$ and the type is $[(8 L+7) *(15 L+10), 1 ;(3+$ $\left.4 L)^{11}\right]$.

Conversely, if the type of the pair (S, D) is this , then $g=0, \omega=$ $5+6 L, k=3+6 L$.

If $B=1$ then $w=4, k=4+2 u$ and $3 \nu_{1}=2 k+3=11+4 u$.
From $3\left(\nu_{1}-5\right)=4(u-1)$, it follows that $\nu_{1}-5=4 L, u=3 L+1$, for some L. Then $\sigma=8 L+11, e=11 L+12$ and the type is $[(8 L+11) *(11 L+$ 12); $\left.(5+4 L)^{11}\right]$.

Conversely, if the type of the pair (S, D) is this , then $g=0, \omega=$ $8+6 L, k=6+6 L$.

5.2 case when $g=1$

Suppose that $g=1$. Then

$$
k(2 i-\rho)+i^{2}=\rho(\tilde{k}+i) .
$$

This implies that $i>0$. We shall enumerate the types when $i=1,2$.

5.2.1 case when $i=1$

If $i=1$ then $k(2-\rho)+1=\rho(\tilde{k}+1)$. Thus $\rho=1, \nu_{1}=2 k+1$ and $k+1=\tilde{k}+1$. Hence,

$$
k=\tilde{k}=p(k-2 p) .
$$

Thus

$$
2 p^{2}-2+2=(p-1) k,
$$

and

$$
2(p+1)+\frac{2}{p-1}=k
$$

Hence, $p-1=1$ or 2 .
If $p=2$ then $k=8=2 w+2 u$.
In the case when $B=1$, we obtain $u=1, \nu_{1}=2 k+1=17, \sigma=2 \nu_{1}+p=$ $34+2=36$ and $e=36+17+1=54$. Thus the type is $\left[36 * 54,1 ; 17^{9}\right]$.

Conversely, if the type is this, then $\omega=9, g=1$.
In the case when $B=0$, we obtain $u=0, \nu_{1}=2 k+1=17, \sigma=2 \nu_{1}+p=$ $34+2=36$ and $e=36$. Thus the type is $\left[36 * 36 ; 17^{9}\right]$.

Conversely, if the type is this, then $\omega=9, k=8, g=1$.
If $p=3$ then $k=9=3 w+2 u, w=3, u=0$ and the type is $\left[41 * 60,1 ; 19^{9}\right]$. Conversely, if the type is this, then $\omega=10, k=9, g=1$.

5.2.2 case when $i=2$

If $i=2$ then

$$
k(4-\rho)+4=\rho(\tilde{k}+2) .
$$

Then $\rho=1$ or 2 or 3 .
i) Assume that $\rho=1$. Then $\nu_{1}=2 k+2, r=9$ and $3 k+4=\tilde{k}+2$. From $\tilde{k}=p(k-2 p)$, it follows that

$$
\begin{equation*}
2 p^{2}+2=(p-3) k \tag{12}
\end{equation*}
$$

Thus

$$
2(p+3)+\frac{20}{p-3}=k
$$

Table 5: case when $\rho=1$ and $g=1, i=2, B=1$

$p-3$	p	$2(p+3)$	$20 /(p-3)$	k	ν_{1}	σ	e	$3 p$	u
1	4	14	20	34	70	144	225	12	11
4	7	20	5	25	52	111	165	21	2
5	8	22	4	26	54	116	171	24	1
10	13	32	2	34	70	153	220.5	39	none

Conversely, if the type is $\left[144 * 225,1 ; 70^{9}\right]$, then $g=1, \omega=36, k=34$.
If the type is $\left[111 * 165,1 ; 52^{9}\right]$, then $g=1, \omega=27, k=25$.
If the type is $\left[116 * 171,1 ; 54^{9}\right]$, then $g=1, \omega=26, k=24$.

Table 6: case when $\rho=1$ and $g=1, i=2, B=0$

$p-3$	p	$2(p+3)$	$20 /(p-3)$	k	ν_{1}	σ	e	$4 p$	u
1	4	14	20	34	70	144	153	16	9
2	5	16	10	26	54	113	116	20	3

Conversely, if the type is $\left[144 * 153 ; 70^{9}\right]$, then $g=1, \omega=36, k=34$.
If the type is $\left[113 * 116 ; 54^{9}\right]$, then $g=1, \omega=28, k=26$.
ii) Assume that $\rho=2$. Then $\nu_{1}=k+1, r=19$ and $2 k+4=2(\tilde{k}+2)$. Hence, $k+2=\tilde{k}+2$. From $\tilde{k}=p(k-2 p)$, it follows that

$$
\begin{equation*}
2 p^{2}=(p-1) k \tag{13}
\end{equation*}
$$

Thus

$$
2(p+1)+\frac{2}{p-1}=k
$$

Hence $p=2$ or 3 . If $p=2$ then $k=8, \nu_{1}=9$. In the case when $B=1$, we obtain $u=1, \nu_{1}=k+1=9$. Then $\sigma=2 \nu_{1}+p=18+2=20$ and $e=20+9+1=30$. Thus the type becomes $\left[20 * 30,1 ; 9^{9}\right]$.

In the case when $B=0$, we obtain $u=0, \nu_{1}=k+1=9$. Then $\sigma=2 \nu_{1}+p=18+2=20$ and $e=20+1=21$. Thus the type becomes $\left[20 * 21 ; 9^{9}\right]$.

In both cases, if the type is one of these, then $g=1, \omega=10, k=8$.
If $p=3$ then $k=9, \nu_{1}=10, k=9, B=1$. Then $\sigma=2 \nu_{1}+p=23$ and $e=23+10=33$. Thus the type becomes $\left[23 * 33,1 ; 10^{9}\right]$.

If the type of the pair (S, D) is this, then $g=1, \omega=11, k=9$.
iii) Assume that $\rho=3$. Then $k+4=3 \tilde{k}+6$. Hence, $k-2=3 \tilde{k}$. From $\tilde{k}=p(k-2 p)$, it follows that

$$
\begin{equation*}
6 p^{2}-2=(3 p-1) k \geq 3 p \cdot(3 p-1) \tag{14}
\end{equation*}
$$

Thus

$$
6 p^{2}>6 p^{2}-2 \geq 3 p \cdot(3 p-1)=9 p^{2}-3 p
$$

Hence, $3 p>3 p^{2}$. This is a contradiction.

5.3 case when $g=2$

Suppose that $g=2$. Then

$$
k(2 i-2-\rho)+(i-1)^{2}=\rho(\tilde{k}+i-3)
$$

Moreover, since $\rho \nu_{1}=i-1+2 k$ and $i \leq 2$, it follows that $\rho>0$. Hence, $i=2$.

Therefore, $k(2-\rho)+1=\rho(\tilde{k}-1)$. Thus $\rho=1$ and so $\tilde{k}=k+2$. Hence,

$$
(p-1) k=2 p^{2}+2
$$

Thus $p>1$ and

$$
2 p+2+\frac{4}{p-1}=k
$$

Hence, we obtain 1) $p=2$,or 2) $p=3$ or 3) $p=5$.

1) $p=2 . k=6+4=10$ and $B=1, u=2$. Hence, $\rho \nu_{1}=i-1+2 k=21$. We obtain three cases i) $\rho=1, \nu_{1}=21$,ii) $\rho=3, \nu_{1}=7$ iii) $\rho=7, \nu_{1}=3$ to examine, separately.
i) $\rho=1, \nu_{1}=21$. Then $\sigma=44, e=67$.

Thus the type becomes $\left[44 * 67,1 ; 21^{9}\right]$.
If the type of the pair (S, D) is this, then $g=2, Z^{2}=12, \omega=12, k=10$.
ii) $\rho=3, \nu_{1}=7$. Then $\sigma=16, e=25$. Thus the type becomes $[16 *$ 25,$\left.1 ; 7^{11}\right]$. However, if the type of the pair (S, D) is this, then $g=9, \omega=$ $19, k=10$.
iii) $\rho=7, \nu_{1}=3$. Then $\sigma=8, e=213$. Thus the type becomes $[8 *$ 13,$\left.1 ; 3^{15}\right]$. However, if the type of the pair (S, D) is this, then $g=11, \omega=$ $21, k=10$.

In the cases 2) and 3), it is easy to derive contradictions.

5.4 case when $g>2$

Suppose that $\bar{g} \geq 2$, we obtain

$$
k \nu_{1} \leq-\tilde{k}+\left(\nu_{1}-1\right) \omega-\left(\nu_{1}-3\right) \bar{g} \leq-\tilde{k}+\left(\nu_{1}-1\right) \omega-2\left(\nu_{1}-3\right)
$$

Hence,

$$
(k+2) \nu_{1} \leq-\tilde{k}+\nu_{1} \omega+6-\omega
$$

and so

$$
\begin{equation*}
k+2 \leq-\tilde{k}+\omega+\frac{6-\omega}{\nu_{1}} \tag{15}
\end{equation*}
$$

Since $\omega-k \leq 2$, it follows that $6-\omega \geq 0$.
If $\omega=6$ then $\tilde{k}=0, k=4$. Moreover, since $\bar{g} \geq 2$, it follows that

$$
\widetilde{\mathcal{Z}}=\nu_{1}(2-\bar{g})-6+3 \bar{g} \leq 0
$$

Hence, $\bar{g}=2, \widetilde{\mathcal{Z}}=0$. Thus,

$$
Y=r \nu_{1}=8 \nu_{1}+k+\omega_{1}=8 \nu_{1}+4+6-2=8 \nu_{1}+8
$$

and $\rho \nu_{1}=8$. Thus we have either i) $\rho=1, \nu_{1}=8$ or ii) $\rho=2, \nu_{1}=4$.
i) $\rho=1, \nu_{1}=8$. Then $\sigma=16, u=2$. The type becomes $\left[16 * 18 ; 8^{9}\right]$.

If the type of the pair (S, D) is this , then $g=3, \omega=6, k=4$.
ii) $\rho=2, \nu_{1}=4$. Then $\sigma=8, u=2$. The type becomes $\left[8 * 10 ; 4^{10}\right]$.

If the type of the pair (S, D) is this , then $g=3, \omega=6, k=4$.
If $4 \leq \omega \leq 5$ then by the inequality (15), we have $\tilde{k}=0, k=2 u, \omega=k+2$.
Hence we get $\omega=4, k=2$. By $\rho \nu_{1}=2 k+i-\bar{g}=6-\bar{g}, \bar{g} \geq 2$ we get $\bar{g}=2, \rho \nu_{1}=4$. Hence, $\rho=1, \nu_{1}=4, \sigma=8, e=9, r=9$.

The type becomes $\left[8 * 9 ; 4^{9}\right]$. However, if the type of the pair (S, D) is this , then $g=2, \omega=3, k=2, i=1$.

If $\omega=3$ then $\omega=k+i$; hence, $i=1, k=2$. By (15), we get $\nu_{1}=3, p=$ $0, \sigma=6$.

6 case when $j_{1}=1, j_{2}=0$

Supposing that $j_{1}=1, j_{2}=0$, we obtain

$$
\begin{equation*}
\rho \nu_{1}=i+1-\bar{g}+2 k . \tag{16}
\end{equation*}
$$

Since $\nu_{1}-1=\widetilde{\mathcal{Z}}$, it follows that

$$
\nu_{1}-1=\widetilde{\mathcal{Z}} \leq-k \nu_{1}-\tilde{k}+\left(\nu_{1}-1\right) \omega-\left(\nu_{1}-3\right) \bar{g}
$$

Thus

$$
(1+k) \nu_{1} \leq\left(\nu_{1}-1\right) \omega-\left(\nu_{1}-3\right) \bar{g}+1
$$

6.1 case when $\bar{g} \geq 1$

Supposing that $\bar{g} \geq 1$, we get

$$
(2+k) \nu_{1} \leq\left(\nu_{1}-1\right) \omega+4=\nu_{1} \omega-\omega+4
$$

Hence, if $i \leq 2$, then $g=1, \omega=4, k=2 ; i=2, B=0, u=1, p=0$. Thus,

$$
\rho \nu_{1}=i+1-\bar{g}+2 k=2+2 k=6 .
$$

We have two cases i) $\rho=1, \nu_{1}=6$ or ii) $\rho=2, \nu_{1}=3$.
i) $\rho=1, \nu_{1}=6$. Then we obtain $\sigma=12, e=13, r=9$. Thus the type becomes $\left[12 * 13 ; 6^{8}, 5\right]$.

Conversely, if the type of the pair (S, D) is this, then $g=2, \omega=4, k=2$.
ii) $\rho=2, \nu_{1}=3$. we obtain $\sigma=6, e=7, r=10$, and so the type becomes $\left[6 * 7 ; 3^{9}, 2\right]$. But $\sigma \geq 7$ was assumed.

6.2 case when $g=0$

Assume $g=0$. Then the formula (FEQ) turns out to be

$$
k(2 i-\rho)+(i+1)^{2}-1=\rho(\tilde{k}+i+2) .
$$

6.2.1 case when $i=1$

Suppose that $i=1$. Then $k(2-\rho)+3=\rho(\tilde{k}+3)$. Hence $\rho=1$. Thus $k=\tilde{k}$, which implies

$$
2 p^{2}-2+2=(p-1) k .
$$

In other words,

$$
2 p+2+\frac{2}{p-1}=k .
$$

Hence, $p=2$ or 3 .
i) If $p=2$ then $k=8$ and $\nu_{1}=2 k+3$.

In the case when $B=1$, we obtain $\nu_{1}=2 k+3=19, k=8=3 \cdot 2+2 u$; $u=1$. Hence $\sigma=38+2=40, e=40+19+1=60$. Therefore, the type becomes [$\left.40 * 60,1 ; 19^{8}, 18\right]$.

Conversely, if the type of the pair (S, D) is this , then $g=0, \omega=9, k=8$.
In the case when $B=0$, we obtain $\nu_{1}=2 k+3=19, k=8=4 \cdot 2+2 u$; $u=0$. Hence $\sigma=38+2=40, e=40$. Therefore, the type becomes [$40 *$ $\left.40 ; 19^{8}, 18\right]$. Conversely, if the pair has this type, then $g=0, \omega=9, k=8$.
ii) If $p=3$ then $k=9$ and $\nu_{1}=2 k+3=21$. Thus $B=1, u=0 . \sigma=$ $42+3=45, e=45+21=66$. Therefore, the type becomes [$\left.45 * 66,1 ; 21^{8}, 20\right]$. Conversely, if the pair has this type ,then $g=0, \omega=10, k=9, Z^{2}=8$.

6.3 case when $i=2$

Suppose that $i=2$. Then

$$
k(4-\rho)+8=\rho(\tilde{k}+4)=\rho(p(k-2 p)+4) .
$$

Further,

$$
k(4-\rho)+8-4 \rho=\rho p k-2 p^{2} \rho .
$$

Hence,

$$
2 p^{2} \rho+8-4 \rho=k(\rho p+\rho-4) \geq 3 p(\rho p+\rho-4)=3 p^{2} \rho+3 p \rho-12 p
$$

Therefore,

$$
\frac{12 p+8}{p^{2}+3 p+4} \geq \rho
$$

Hence, $\rho \leq 2$.
i) Suppose that $\rho=1$. Then

$$
3 k+4=p k-2 p^{2}
$$

Hence,

$$
2 p^{2}+4=(p-3) k
$$

and $p \geq 4$. Thus

$$
2(p+3)+\frac{22}{p-3}=k
$$

Since $k \geq 3 p$, we obtain the following tables.

Table 7: case when $\rho=1, B=1$

$p-3$	p	$2(p+3)$	$22 /(p-3)$	k	ν_{1}	σ	e	$3 p$	u
1	4	14	22	36	76	156	244	12	12
2	5	16	11	27	58	121	185	15	6

Conversely, if the type is $\left[156 * 244,1 ; 76^{8}, 75\right]$, then $g=0, \omega=38, k=36$. If the type is $\left[121 * 185 ; 58^{8}, 57\right]$, then $g=0, \omega=29, k=27$.

Table 8: case when $\rho=1, B=0$

$p-3$	p	$2(p+3)$	$22 /(p-3)$	k	ν_{1}	σ	e	$4 p$	u
1	4	14	22	36	76	156	168	16	12
2	5	16	11	27	58	121	127	20	6

Conversely, if the type is $\left[156 * 168 ; 76^{8}, 75\right]$, then $g=0, \omega=38, k=36$.
If the type is $\left[121 * 127 ; 58^{8}, 57\right]$, then $g=0, \omega=29, k=27$.
ii) Suppose that $\rho=2$. Then $\nu_{1}=k+2$ and

$$
2 k+8=2(\tilde{k}+4)=2(p(k-2 p)+4) .
$$

Hence,

$$
2 p^{2}=(p-1) k
$$

and then

$$
2(p+1)+\frac{2}{p-1}=k .
$$

If $p=2$, then $k=8$ and $\nu_{1}=10$ and $\sigma=22$.
If $B=1$ then $\sigma=22, e=33$. Therefore, the type becomes $[22 *$ 33,$\left.1 ; 10^{9}, 9\right]$.

Conversely, if the pair has this type, then $g=0, \omega=10, k=8$.
If $B=0$ then $\sigma=22, e=22$. Therefore, the type becomes $\left[22 * 22 ; 10^{9}, 9\right]$.
Conversely, if the pair has this type, then $g=0, \omega=10, k=8$.
If $p=3$, then $k=9$ and $\nu_{1}=11$ and $\sigma=25, e=36$. Therefore, the type becomes $\left[25 * 36,1 ; 11^{9}, 10\right]$. Conversely, if the pair has this type, then $g=0, \omega=11, k=9, Z^{2}=8$.

6.4 case when $g=1$

Suppose that $g=1$. Then

$$
k(2 i-2-\rho)+i^{2}-1=\rho(\tilde{k}+i-1)
$$

and $i=2$ and $\rho=1$. Thus $\nu_{1}=3+2 k$ and $k+2=\tilde{k}$. Accordingly,

$$
2 p+2+\frac{4}{p-1}=k .
$$

Hence, we obtain the following tables.
Table 9: case when $\rho=1$ and $i=2 ; B=1$

$p-1$	p	$2(p+1)$	$4 /(p-1)$	k	ν_{1}	σ	e	$3 p$	u
1	2	6	4	10	23	48	73	6	2

Table 10: $\rho=1$ and $i=2 ; B=0$

$$
\begin{array}{cccccccccc}
p-1 & p & 2(p+1) & 4 /(p-1) & k & \nu_{1} & \sigma & e & 4 p & u \\
\hline 1 & 2 & 6 & 4 & 10 & 23 & 48 & 49 & 8 & 1
\end{array}
$$

Conversely, if the pair has the type $\left[48 * 73,1 ; 23^{8}, 22\right]$, then $g=1, \omega=$ $12, k=10$.

Conversely, if the pair has the type $\left[48 * 49 ; 23^{8}, 22\right]$, then $g=1, \omega=$ $12, k=10, Z^{2}=11$.

$7 \quad$ case when $j_{1}=2, j_{2}=0$

Supposing that $j_{1}=2, j_{2}=0$, we obtain

$$
\begin{equation*}
\rho \nu_{1}=i+1-\bar{g}+2 k . \tag{17}
\end{equation*}
$$

Since $2 \nu_{1}-2=\widetilde{\mathcal{Z}}$, it follows that

$$
2 \nu_{1}-2 \leq \widetilde{\mathcal{Z}} \leq-k \nu_{1}-\tilde{k}+\left(\nu_{1}-1\right) \omega-\left(\nu_{1}-3\right) \bar{g}
$$

Thus

$$
(2+k) \nu_{1} \leq\left(\nu_{1}-1\right) \omega-\left(\nu_{1}-3\right) \bar{g}+2
$$

$7.1 \quad$ case when $\bar{g} \geq 0$

Supposing that $\bar{g} \geq 0$, we get

$$
(2+k) \nu_{1} \leq\left(\nu_{1}-1\right) \omega+2
$$

Hence, it follows that

$$
2+k \leq k+2+\frac{2-\omega}{\nu_{1}}
$$

Therefore,since $i=\omega-k \leq 2$, we obtain $\omega=2, g=1, k=0, B=0$. Then

$$
Y=(r-2) \nu_{1}+2\left(\nu_{1}-1\right)=r \nu_{1}-2=8 \nu_{1}+\omega=8 \nu_{1}+2
$$

Thus $\rho \nu_{1}=4$, which implies $\rho=1, \nu_{1}=4$.
Therefore, the type becomes $\left[8 * 8 ; 4^{7}, 3^{2}\right]$.
Conversely, if the pair has this type, then $g=1, \omega=2, k=0$.

7.2 case when $g=0$

The formula (FEQ) turns out to be

$$
k(2 i-2-\rho)+(i+1)^{2}-4=\rho(\tilde{k}+i+1) .
$$

Since $i \leq 2$, it follows that $i=2$. Hence, $\rho \nu_{1}=5+2 k$ and

$$
k(2-\rho)+5=\rho(\tilde{k}+3) .
$$

Hence, $\rho=1$ and $k+2=\tilde{k}=p(k-2 p)$. Thus $2 p^{2}+2=(p-1) k$; hence,

$$
2 p+2+\frac{4}{p-1}=k .
$$

This induces $p=2$ or 3 or 5 .
But, if $p=3$ then $k=10, B=1, u=0$. By the way, $k=3 p+2 u=9$, which contradicts $k=10$.

Moreover, if $p=5$ then $k=10, B=1, u=0$. By the way, $k=3 p+2 u=$ 9 , which contradicts $k=10$.

Table 11: case when $B=1$

$p-1$	p	$2 p+2$	$4 /(p-1)$	k	u	ν_{1}	σ	e	$3 p+2 u$
1	2	6	4	10	2	25	52	79	10

Consequently, the type becomes $\left[52 * 79,1 ; 25^{7}, 24^{2}\right]$.

Table 12: case when $B=0$

$$
\begin{array}{cccccccccc}
p-1 & p & 2 p+2 & 4 /(p-1) & k & u & \nu_{1} & \sigma & e & 4 p+2 u \\
\hline 1 & 2 & 6 & 4 & 10 & 1 & 25 & 52 & 53 & 10
\end{array}
$$

Consequently, the type becomes $\left[52 * 53 ; 25^{7}, 24^{2}\right]$.
Conversely, if the type of (S, D) is this, then $g=0, \omega=12, Z^{2}=10$.

8 case when $j_{1}=0, j_{2}=1$ or $t_{2}=1$

Assume $j_{1}=0$ and either $j_{2}=1$ or $t_{2}=1$. Then $2 \nu_{1}-4=\widetilde{\mathcal{Z}}$ and hence,

$$
2 \nu_{1}-4 \leq-k \nu_{1}-\tilde{k}+\left(\nu_{1}-1\right) \omega-\left(\nu_{1}-3\right) \bar{g}
$$

Thus

$$
(2+k) \nu_{1} \leq\left(\nu_{1}-1\right) \omega-\left(\nu_{1}-3\right) \bar{g}+4
$$

8.1 case when $g>0$

Suppose that $\bar{g} \geq 0$. Then

$$
(2+k) \nu_{1} \leq \nu_{1} \omega+4-\omega
$$

Hence, $\omega=4, k=2, g=1$.
We have either i) $t_{2}=1$ or ii) $t_{\nu_{1}-2}=1$.
i) $t_{2}=1$. Then by $Y=8 \nu_{1}+2+\omega=(r-1) \nu_{1}+2$, we get

$$
(\rho-1) \nu_{1}=k+2=4
$$

Hence, $\nu_{1}=4, r=10$.
Consequently, the type becomes $\left[8 * 9 ; 4^{9}, 2\right]$.
Conversely, if the pair has this type, then $g=1, \omega=4, k=2$.
ii) $t_{\nu_{1}-2}=1, \nu_{1}>4$. Then by $Y=8 \nu_{1}+2+\omega=r \nu_{1}-2$, we get

$$
\rho \nu_{1}=i+2-\bar{g}+2 k=k+6=8
$$

Thus, we have $\rho=1, \nu_{1}=8$. Then the type becomes $\left[16 * 17 ; 8^{8}, 6\right]$.
Conversely, if the pair has this type, then $g=1, \omega=4, k=2, g=$ $1, Z^{2}=3$.

8.2 case when $g=0$

Suppose that $\bar{g}=-1$. Then we have two cases a) $t_{\nu_{1}-2}=1$ and b) $t_{2}=1$.

In the case a), the formula (FEQ) turns out to be

$$
k(2 i-2-\rho)+(i+1)^{2}-16=\rho(\tilde{k}+i-1)
$$

Since $i \leq 2$, it follows that $i=2$ and that

$$
k(2-\rho)+9-16=\rho(\tilde{k}+1)
$$

Hence, $\rho=1$ and

$$
2 p^{2}-2+6=(p-1) k \geq 3 p^{2}-3 p
$$

Therefore,

$$
k=2 p+2+\frac{6}{p-1} .
$$

Hence, we obtain the following table.

Table 13:

$p-1$	p	$2 p+2$	$6 /(2 p+2)$	k	$\nu_{1}=2 k+5$	u	σ	e
1	2	6	6	12	29	3	60	92
2	3	8	3	11	27	1	57	85
3	4	10	2	12	29	0	62	91

Consulting this table, if $p=2$, then we obtain the following types:
$B=1$. Then $u=3$ and the type becomes $\left[60 * 92,1 ; 29^{8}, 27\right]$.
Conversely, if the pair has this type, then $g=0, \omega=14, k=12, Z^{2}=12$. $B=0$. Then $u=2$ and the type becomes $\left[60 * 62 ; 29^{8}, 27\right]$.
Conversely, if the pair has this type, then $g=0, \omega=14, k=12, Z^{2}=12$.
In the case b), we have $j_{1}=j_{2}=0, t_{2}=1$ and that $\bar{g}=-1$.
By the way since $Y=\nu_{1}(r-1)+2$ and $X=\nu_{1}^{2}(r-1)+4$ we obtain

- $(\rho-1) \nu_{1}=k+\omega-\bar{g}-2=2 k+i-\bar{g}-2$,
- $(\rho-1) \nu_{1}^{2}=-4+2 k \nu_{1}+\tilde{k}+\omega-3 \bar{g}=-4+2 k \nu_{1}+\tilde{k}+k+i-3 \bar{g}$.

By

$$
\left.(\rho-1) \nu_{1}^{2}=-4+2 k \nu_{1}+\tilde{k}+k+i-3 \bar{g}=2 k+i-\bar{g}-2\right) \nu_{1}
$$

we get

$$
(i-\bar{g}-2) \nu_{1}=-4+\tilde{k}+k+i-3 \bar{g}
$$

Thus,

$$
(i-\bar{g}-2)(2 k+i-\bar{g}-2)=(-4+\tilde{k}+k+i-3 \bar{g})(\rho-1)
$$

Putting $\bar{g}=-1$, we get

$$
(i-1)(2 k+i-1)=(\tilde{k}+k+i-1)(\rho-1)
$$

Since $i \leq 2$, it follows that $i=2$ and therefore,

$$
2 k+1=(\tilde{k}+k+1)(\rho-1)=(\tilde{k}+1)+(\rho-1)+k(\rho-1)
$$

Then $\rho-1>0$ and hence,

$$
k(3-\rho)=(\tilde{k}+k+1)(\rho-1)-1>0
$$

Thus, $\rho=2$ and finally, we obtain $\tilde{k}=k$ and so $2 p^{2}-2+2=k$. Then we get either 1) $p=2$; hence $k=8=3 \times 2+2$ or $k=8=4 \times 2$ or 2) $p=3$; hence $k=9$. By $\nu_{1}=(\rho-1) \nu_{1}=k+\omega-\bar{g}-2=2 k+2+1-2=2 k+1$, we get
1). $k=8, \nu_{1}=2 k+1=17$. If $B=1$ then $u=1$ else if $B=0$ then $u=0$. Then we have the following cases:
i) $B=1$. Thus $\sigma=2 \nu_{1}+p=36, e=\sigma+u+\nu_{1}=54$ and the type becomes $\left[36 * 54,1 ; 17^{9}, 2\right]$.
ii) $B=0$. Thus the type becomes $\left[36 * 36 ; 17^{9}, 2\right]$.

Conversely, if the pair has this type, then $g=0, \omega=10, k=8$.
2) $p=3$. Then $k=9, \nu_{1}=2 k+1=19, u=0, B=1$. Thus the type becomes $\left[41 * 60,1 ; 19^{9}, 2\right]$.

Conversely, if the pair has this type, then $g=0, \omega=11, k=9$.

9 case when $\widetilde{\mathcal{Z}} \geq 3\left(\nu_{1}-3\right)$

Suppose that $k>0, \nu_{1} \geq 3$ and $\widetilde{\mathcal{Z}} \geq 3\left(\nu_{1}-3\right)$.
From definition, it follows that

$$
\begin{align*}
3\left(\nu_{1}-3\right) \leq \widetilde{\mathcal{Z}} & =\nu_{1} Y-X \tag{18}\\
& =-k \nu_{1}+\left(\nu_{1}-1\right) \omega+\left(3-\nu_{1}\right) \bar{g}-\tilde{k} \tag{19}\\
& \leq-k \nu_{1}+\left(\nu_{1}-1\right) \omega-\left(3-\nu_{1}\right)-\tilde{k} \tag{20}
\end{align*}
$$

and that

$$
(k+2) \nu_{1} \leq\left(\nu_{1}-1\right) \omega-\tilde{k}+6
$$

Hence,

$$
\begin{equation*}
k+2 \leq \nu_{1} \leq \omega+\frac{6-\omega-\tilde{k}}{\nu_{1}} \tag{22}
\end{equation*}
$$

Thus we have three cases 1) $6-\omega-\tilde{k}<0,2) 6-\omega-\tilde{k}=0$ and 3) $6-\omega-\tilde{k}>0$.

1) $6-\omega-\tilde{k}<0$. Then $k \leq \omega-3$. Hence, $i \geq 3$, which contradicts the hypothesis: $i \leq 2$.
2) $6-\omega-\tilde{k}=0$. Then from the formula (22), it follows that $k+2 \leq$ $\omega=k+i$. Hence, $i=2$. Thus the formula (18) induces

$$
k+3+\bar{g} \leq \omega+\frac{3 \bar{g}+9-\omega-\tilde{k}}{\nu_{1}}
$$

By

$$
1+\omega-2+\bar{g}=k+3+\bar{g} \leq \omega+\frac{3 \bar{g}+9-\omega-\tilde{k}}{\nu_{1}}=\omega+\frac{3 g}{\nu_{1}}
$$

we get

$$
\nu_{1} g \leq 3 g
$$

We have two cases I) $\nu_{1} \geq 4$ and II) $\nu_{1}=3$ to examine ,separately.

9.1 case when $\nu_{1} \geq 4$

I) $\nu_{1} \geq 4$. Then $g=0$. Since $6=\omega-\tilde{k}$ and $\omega=k+2$, it follows that $\tilde{k}+k=4$. Then $k=3$ or 4 . To verify this we examine the following two cases:

If $\tilde{k}>0$ then $p>0$ and so $k \geq 3$. Hence, $\tilde{k}=1$ and $k=3$, which implies that $p=1, B=1, u=0$.

If $\tilde{k}=0$ then $p=0$ and so $k=2 u=4$.
By the way, from the next formulae :

- $Y=8 \nu_{1}+k+\omega+1=8 \nu_{1}+2 k+3$,
- $X=8 \nu_{1}^{2}+2 k \nu_{1}+\tilde{k}+\omega+3=8 \nu_{1}^{2}+2 k \nu_{1}+\tilde{k}+k+5$,
it follows that

$$
\widetilde{\mathcal{Z}}=\nu_{1} Y-X=3 \nu_{1}-(\tilde{k}+k+5)=3 \nu_{1}-9 .
$$

Letting $a=t_{\nu_{1}-1}, b=t_{\nu_{1}-2}+t_{2}, c=t_{3}+t_{\nu_{1}-3}$, we obtain

$$
a\left(\nu_{1}-1\right)+2 b\left(\nu_{1}-2\right)+3 c\left(\nu_{1}-3\right)=3 \nu_{1}-9 .
$$

If $c=0$ then $(a+2 b-3) \nu_{1}=a+4 b-9$. Since $\nu_{1} \geq 3$, it follows that

$$
3(a+2 b-3) \leq a+4 b-9 .
$$

Hence, $3 a+4 b \leq a+4 b$, which implies $a=b=0$. Therefore, $a=b=0, c=1$.
From $t_{3}+t_{\nu_{1}-3}=1$, it follows that i) $t_{3}=0, t_{\nu_{1}-3}=1$ or ii) $t_{3}=$ $1, t_{\nu_{1}-3}=0$.

Hence, we have either i) $Y=\nu_{1}(r-1)+\nu_{1}-3=\nu_{1} r-3$ or ii) $Y=$ $\nu_{1}(r-1)+3$.
i) $Y=\nu_{1} r-3$. Then by making use of $Y=8 \nu_{1}+2 k+3$ we get $\rho \nu_{1}=2 k+6$, where $\rho=r-8$.

Then we have the following cases to examine, separately.

1) $k=4$. Then $p=0, B=0, \omega_{1}=7$. Hence, $\rho \nu_{1}=14$. Thus $\nu_{1}=14$ or 7 , for $\nu_{1}>3$ by hypothesis.

If $\nu_{1}=14$ then $\rho=1, r=9, \sigma=28, e=\sigma+u=30$. The type turns out to be $\left[28 * 30 ; 14^{8}, 11\right]$. If the pair has this type ,then $g=0, \omega=6, k=4$.

If $\nu_{1}=7$ then $\rho=2, r=10, \sigma=14, e=\sigma+u=16$. The type turns out to be $\left[14 * 16 ; 7^{9}, 4\right]$. If the pair has this type ,then $g=0, \omega=6, k=4$.
2) $k=3$. Then $p=1, B=1, u=0, \omega_{1}=7$. Hence, $\rho \nu_{1}=12$. Thus $\nu_{1}=12$ or 6 , for $\nu_{1}>3$ by hypothesis. Hence,

If $\nu_{1}=12$ then $\rho=1, r=9, \sigma=25, e=\sigma+u+\nu_{1}=37$. The type turns out to be $\left[25 * 37,1 ; 12^{8}, 9\right]$. If the pair has this type ,then $g=0, \omega=5, k=3$.

If $\nu_{1}=6$ then $\rho=2, r=10, \sigma=13, e=\sigma+u+\nu_{1}=19$. The type turns out to be $\left[13 * 19,1 ; 6^{9}, 3\right]$. If the pair has this type , then $g=0, \omega=5, k=3$.
ii) $Y=\nu_{1}(r-1)+3=2 k+3$. We obtain $(\rho-1) \nu_{1}=2 k$.

1) $k=4$. Then $p=0, u=2$. Hence, $(\rho-1) \nu_{1}=8$. Thus $\nu_{1}=8$ or 4 , for $\nu_{1}>3$ by hypothesis.

If $\nu_{1}=8$ then $\rho=2, r=10, \sigma=16, e=\sigma+u=18$. The type turns out to be $\left[16 * 18 ; 8^{9}, 3\right]$. If the pair has this type , then $g=0, \omega=6, k=4$.

If $\nu_{1}=4$ then $\rho=3, r=11, \sigma=8, e=\sigma+u=10$. The type turns out to be $\left[8 * 10 ; 4^{10}, 3\right]$. If the pair has this type , then $g=0, \omega=6, k=4$.
2) $k=3$. Then $p=1, B=1, u=0, \omega_{1}=6$. Hence, $(\rho-1) \nu_{1}=6$. Thus $\nu_{1}=6$ for $\nu_{1}>3$ by hypothesis. Hence,

If $\nu_{1}=6$ then $\rho=2, r=10, \sigma=12, e=\sigma+u+\nu_{1}=18$. The type turns out to be $\left[13 * 19,1 ; 6^{9}, 3\right]$. If the pair has this type , then $g=0, Z^{2}=2, \omega=$ $5, k=3$.

9.2 case when $\nu_{1}=3$

II) $\nu_{1}=3$. Then $\widetilde{\mathcal{Z}}=2 t_{2}$ and since $\omega=k+i$, where $i \leq 2$, it follows that

$$
\widetilde{\mathcal{Z}}=\nu_{1}(i-\bar{g})-(k+i+\tilde{k}-3 \bar{g})
$$

Hence, $2 i=k+\tilde{k}+2 t_{2} \leq 4$.
However by $\sigma=6+p \geq 7$ by hypothesis, we get $p>0$.
Hence, $\tilde{k}=1, k=3, p=1, u=0, B=1$. Moreover , $i=2, t_{2}=0$. Thus, the type becomes $\left[7 * 10,1 ; 3^{r}\right]$ where $33-3 r \geq 0$.

Conversely, if the pair has this type, then $\bar{g}=32-3 r, 2 \omega=(\sigma-3) \widetilde{B}-$ $6 \sigma=10$. Hence, $\omega=5$, which is equal to $k+2$.

10 case when $\widetilde{\mathcal{Z}}<3\left(\nu_{1}-3\right)$

In the case when $\widetilde{\mathcal{Z}}<3\left(\nu_{1}-3\right)$, we obtain

$$
a\left(\nu_{1}-1\right)+2 b\left(\nu_{1}-2\right)<\widetilde{\mathcal{Z}}<3\left(\nu_{1}-3\right)
$$

Here $a=t_{\nu_{1}-1}, b=t_{\nu_{1}-2}+t_{2}$.
Then we have either i) $a=1,2$ and $b=0$ or ii) $a=0$ and $b=1$.
But these cases were discussed before.

11 estimate of genus in terms of ω

From the fundamental equalities, we obtain

$$
0 \leq \widetilde{\mathcal{Z}}=B_{2}\left(\nu_{1}-\sigma\right) \sigma-k \nu_{1}-\tilde{k}+\left(\nu_{1}-1\right) \omega-\left(\nu_{1}-3\right) \bar{g}
$$

Thus

$$
\begin{equation*}
B_{2}\left(\sigma-\nu_{1}\right) \sigma+\left(\nu_{1}-3\right) \bar{g}+k \nu_{1}+\tilde{k} \leq-\widetilde{\mathcal{Z}}+\left(\nu_{1}-1\right) \omega \tag{23}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\left(\nu_{1}-3\right) \bar{g}+k \nu_{1}+\tilde{k} \leq\left(\nu_{1}-1\right) \omega . \tag{24}
\end{equation*}
$$

Assuming $\nu_{1} \geq 4$, we get the following

Theorem 3

$$
\begin{equation*}
\bar{g} \leq \frac{\nu_{1}-1}{\nu_{1}-3} \omega . \tag{25}
\end{equation*}
$$

Moreover, if $\bar{g}=\frac{\nu_{1}-1}{\nu_{1}-3} \omega$ then the type becomes $\left[2 \nu_{1} * 2 \nu_{1} ; \nu_{1}^{r}\right], r=1,2, \cdots, 7$ and their associates:

Hence, the following estimate is obtained.

Corollary 1 If $\nu_{1} \geq 4$, then

$$
\bar{g} \leq 3 \omega
$$

Moreover, if $\bar{g}=3 \omega$ then $\nu_{1}=4$ and the type becomes $\left[8 * 8 ; 4^{r}\right], r=$ $1,2, \cdots, 7$ and their associates:

12 another estimate

For a positive integer $n \geq 4$, define $\widetilde{F}(n)$ to be $(n-1) \omega-(n-3) \bar{g}$ and $\widetilde{F}(n)_{0}$ to be $(n-1) \omega_{0}-(n-3) \bar{g}_{0}$, where $\bar{g}_{0}=\frac{\left(C+K_{0}\right) \cdot C}{2}, \omega_{0}=\frac{\left(C+3 K_{0}\right) \cdot C}{2}$. Then

$$
\widetilde{F}(n)-\widetilde{F}(n)_{0}=\sum_{j=2}^{\nu_{1}}(n-j) j t_{j}
$$

To verify the above, we notice

$$
\widetilde{F}(n)=\frac{1}{2}(n-1)\left(D+3 K_{S}\right) \cdot D-\frac{1}{2}(n-3)\left(D+K_{S}\right) \cdot D=\left(D+n K_{S}\right) \cdot D .
$$

and

$$
\widetilde{F}(n)_{0}=\left(C+n K_{0}\right) \cdot C=(\sigma-n) \widetilde{B}-2 n \sigma .
$$

As a matter of fact,

$$
C^{2}=\widetilde{B} \cdot C, K_{0} \cdot C=\omega_{0}-\bar{g}_{0}=\tau_{3} / 2-9-\tau_{1} / 2+1=-2 \sigma-\widetilde{B}
$$

Furthermore,

$$
\left(\left(D+n K_{S}\right)-\left(C+n K_{0}\right)\right) \cdot(D-C)=\sum_{j=2}^{\nu_{1}}(n-j) j t_{j}
$$

Here, $\widetilde{B}=2 e-B \sigma$ and $\tau_{m}=(\sigma-m)(\widetilde{B}-2 m)$.
Then defining $\widetilde{\mathcal{Z}}(n)$ to be $\sum_{j=2}^{\nu_{1}}(n-j) j t_{j}$, we obtain

$$
\begin{equation*}
\widetilde{F}(n)=\widetilde{F}(n)_{0}+\widetilde{\mathcal{Z}}(n) \tag{26}
\end{equation*}
$$

By Theorem 3, if $n \leq \nu_{1}$ then $\frac{n-1}{n-3} \omega \geq \frac{\nu_{1}-1}{\nu_{1}-3} \omega \geq \bar{g}$. Hence, $\widetilde{F}(n) \geq 0$.
Thus if $\widetilde{F}(n)<0$, then $n>\nu_{1}$ and so $\widetilde{\mathcal{Z}}(n)>0$.

12.1 computation of $\widetilde{F}(n)_{0}$

When $B \neq 1$, we get $\widetilde{B}=2 e-B \sigma=\left(B_{2}+2\right) \sigma+2 u$.

$$
\begin{aligned}
\widetilde{F}(n)_{0} & =(\sigma-n) \widetilde{B}-2 n \sigma \\
& =(\sigma-n)\left(\left(B_{2}+2\right) \sigma+2 u\right)-2 n \sigma \\
& =(\sigma-n) B_{2}+2 u(\sigma-n)+2(\sigma-2 n) \sigma .
\end{aligned}
$$

Thus if $\sigma \geq 2 n$ then $\widetilde{F}(n)_{0} \geq 0$.
To study the case when $\sigma<2 n$, we replace σ by $2 n-j$ and get $\widetilde{F}(n)_{0}=(n-j) B_{2}+2(n-j) u+j(j-2 n)$.
Hence, if $n>j$ and $\widetilde{F}(n)_{0}<0$ then $(n-j) B_{2}+2(n-j) u+j(j-2 n)<0$.
This implies that

$$
u<\frac{j(2 n-j)-(n-j) B_{2}}{2(n-j)}
$$

Thus u is bounded for n.

When $B=1$, we get $\widetilde{B}=\sigma+2 u+2 \nu_{1}$.
Replacing σ by $3 n-j-2$, we obtain

$$
\begin{aligned}
\widetilde{F}(n)_{0} & =(\sigma-n)\left(\sigma+2 u+2 \nu_{1}\right)-2 n \sigma \\
& =(2 n-j-2)\left(\sigma+2 u+2 \nu_{1}\right)-2 n \sigma \\
& =-(j+2) \sigma+(2 n-j-2)\left(2 u+2 \nu_{1}\right) \\
& =(2 n-j-2)\left(2 u+2 \nu_{1}-j-2\right)-n(j+2) .
\end{aligned}
$$

If $j=0$ then

$$
\widetilde{F}(n)_{0}=(2 n-2)\left(2 u+2 \nu_{1}-2\right)-2 n \geq 2(n-2) \geq 4
$$

for $2 u+2 \nu_{1} \geq 4$ and $n \geq 4$.
If $j=1$ and then $u+\nu_{1} \geq 3$ then

$$
\widetilde{F}(n)_{0}=(2 n-3)\left(2 u+2 \nu_{1}-3\right)-3 n \geq 3(n-3) \geq 3
$$

If $j=2$ and then $u+\nu_{1} \geq 4$ then

$$
\widetilde{F}(n)_{0}=(2 n-4)\left(2 u+2 \nu_{1}-4\right)-4 n \geq 4(n-4) \geq 0
$$

Moreover,supposing that $2 n-j-2>0$, if $\widetilde{F}(n)_{0}<0$ then from $(2 n-$ $j-2)\left(2 u+2 \nu_{1}-j-2\right)-n(j+2)<0$ we get

$$
2 u<\frac{n(j+2)}{2 n-j-2}-2 \nu_{1}+j+2 \leq \frac{n(j+2)}{2 n-j-2}+j+2
$$

However, if $\nu_{1}=1$ then $\widetilde{B}=\sigma+2 u$ and $u \geq 2$.
In this case, $g_{0}=g=(\sigma-1)(\sigma+2 u-2) / 2, \omega=(\sigma-3)(\sigma+2 u) / 2-3 \sigma$.
Hence, $\widetilde{F}(n)_{0}=(\sigma-n)(\sigma+2 u)-2 n \sigma=\sigma(\sigma-3 n)+2 u(\sigma-n)$.

12.2 case when $n=4$

Assume that $n=4$. Then $\widetilde{F}(4)=\widetilde{F}(4)_{0}+\widetilde{Z}(4)$.
If $\sigma=7$, then $\widetilde{F}(4)_{0}=-35+6 u$. Assuming $\widetilde{F}(4)_{0}<0$, we obtain $u=2,3,5$.

If $\sigma=8$, then $\underset{\sim}{\widetilde{F}}(4)_{0}=8(u-3)$. Assuming $\widetilde{F}(4)_{0}<0$, we obtain $u=2$.
If $\sigma=9$, then $\widetilde{F}(4)_{0}=-27+10 u$. Assuming $\widetilde{F}(4)_{0}<0$, we obtain $u=2$.

12.3 case in which $3 \omega<\bar{g}$

Assume that $\sigma \geq 7$.
If $n=4$ and $\nu_{1}<4$ then

$$
\widetilde{F}(4)=3 \omega-\bar{g}=(\sigma-4) \widetilde{B}-8 \sigma+4 t_{2}+3 t_{3}
$$

If $B=1$ then $\widetilde{B}=\sigma+2 u+2 \nu_{1}$ and then $\sigma=7$ or 8,9 .
When $\sigma=7, \widetilde{F}(4)_{0}=3\left(7+2 u+2 \nu_{1}\right)-56=-35+6\left(u+\nu_{1}\right)$.
If $\nu_{1}=3$, then $\widetilde{F}(4)=-17+6 u+4 t_{2}+3 t_{3}<0$.
If $\nu_{1}=2$, then $\widetilde{F}(4)=-23+6 u+4 t_{2}<0$.
If $\nu_{1}=1$, then $\widetilde{F}(4)=-35+6 u<0$. Hence, $2 \geq u \geq 5$. And $\omega=$ $17+4 u, \bar{g}=14+6 u$.

When $\sigma=8, \widetilde{F}(4)_{0}=4\left(8+2 u+2 \nu_{1}\right)-64=-32+8\left(u+\nu_{1}\right)$.
If $\nu_{1}=3$, then $\widetilde{F}(4)=-8+8 u+4 t_{2}+3 t_{3}<0$.
If $\nu_{1}=2$, then $\widetilde{F}(4)=-16+8 u+4 t_{2}<0$.
If $\nu_{1}=1$, then $\widetilde{F}(4)=-32+8 u<0$. Hence, $2 \geq u \geq 3$. And $\omega=$ $21+4 u, \bar{g}=14+6 u$.

When $\sigma=9, \widetilde{F}(4)_{0}=5\left(9+2 u+2 \nu_{1}\right)-72=-27+10\left(u+\nu_{1}\right)$.
If $\nu_{1}=3$, then $\widetilde{F}(4)=-7+10 u+4 t_{2}+3 t_{3}<0$.
If $\nu_{1}=2$, then $\widetilde{F}(4)=-17+10 u+4 t_{2}<0$.
When $\sigma=10, \widetilde{F}(4)_{0}=6\left(10+2 u+2 \nu_{1}\right)-80=-20+12\left(u+\nu_{1}\right)>0$.
If $n=5$ and $\nu_{1}<5$ then

$$
\widetilde{F}(5)=2(2 \omega-\bar{g})=(\sigma-5) \widetilde{B}-10 \sigma+6 t_{2}+6 t_{3}+4 t_{4} .
$$

If $n=6$ and $\nu_{1}<6$ then

$$
\widetilde{F}(6)=5 \omega-3 \bar{g}=(\sigma-6) \widetilde{B}-12 \sigma+8 t_{2}+9 t_{3}+8 t_{4}+5 t_{5}
$$

If $B \neq 1$ then $\widetilde{B}=2 e-B \sigma=B_{2} \sigma+2 u+2 \sigma$. Thus,for $\sigma=2 n$, it follows that

$$
\widetilde{F}(n)_{0}=(2 n-n)\left(2 B_{2} n+2 u+4 n\right)-4 n^{2} \geq 0
$$

If $B=1$ then $\widetilde{B}=\sigma+2\left(u+\nu_{1}\right)$.
For $\sigma=3 n-2$, it follows that

$$
\widetilde{F}(n)_{0}=(2 n-2)\left(3 n-2+2 u+2 \nu_{1}\right)-2 n(3 n-2) \geq n-2 .
$$

Table 14: the types when $\widetilde{F}(n)<0, n=4$

$n=4$				
σ	B	ν_{1}	$\tilde{F}(n)_{0}$	$\tilde{\mathcal{Z}}(n)$
7	1	3	$-17+6 u$	$4 t_{2}+3 t_{3}$
7	1	2	$-23+6 u$	$4 t_{2}$
7	0	2,3	$-14+6 u$	$4 t_{2}+3 t_{3}$
8	1	3	$-26+8 u$	$4 t_{2}+3 t_{3}$
8	1	2	$-28+8 u$	$4 t_{2}$
9	1	2	$-7+10 u$	$4 t_{2}$

Table 15: the types when $4 \leq \bar{g} / \omega$

u	σ	ν_{1}	t_{2}	t_{3}	ω	g	\bar{g}	$F(n)$	\bar{g} / ω	fraction
2	7	0	0	0	1	27	26	-23	26	26
0	7	2	1	0	2	26	25	-19	12.5	$12 \frac{1}{2}$
0	7	2	2	0	3	25	24	-15	8	8
3	7	0	0	0	5	33	32	-17	6.4	$6 \frac{2}{5}$
0	7	3	0	1	5	30	29	-14	5.8	$5 \frac{4}{5}$
0	7	2	3	0	4	24	23	-11	5.75	$5 \frac{3}{4}$
2	8	0	0	0	6	35	34	-16	5.66	$5 \frac{2}{3}$
0	7	3	0	2	5	27	26	-11	5.2	$5 \frac{1}{5}$
1	7	2	1	0	6	32	31	-13	5.166666667	$5 \frac{1}{6}$
0	7	3	1	1	6	29	28	-10	4.666666667	$4 \frac{2}{3}$
0	7	3	0	3	5	24	23	-8	4.6	$4 \frac{3}{5}$
0	7	2	4	0	5	23	22	-7	4.4	$4 \frac{2}{5}$
1	7	2	2	0	7	31	30	-9	4.285714286	$4 \frac{2}{7}$
4	7	0	0	0	9	39	38	-11	4.22222	$4 \frac{2}{9}$
0	7	3	1	2	6	26	25	-7	4.166666667	$4 \frac{1}{6}$
0	7	3	0	4	5	21	20	-5	4	4

Table 16: the types when $3<\bar{g} / \omega<4$

u	σ	ν_{1}	t_{2}	t_{3}	ω	g	\bar{g}	$F(n)$	\bar{g} / ω	fraction
1	7	3	0	1	9	36	35	-8	3.888888889	$3 \frac{8}{9}$
0	7	3	2	1	7	28	27	-6	3.857142857	$3 \frac{6}{7}$
2	7	2	1	0	10	38	37	-7	3.7	$3 \frac{7}{10}$
0	7	3	1	3	6	23	22	-4	3.666666667	$3 \frac{2}{3}$
1	7	2	3	0	8	30	29	-5	3.625	$3 \frac{5}{8}$
2	9	0	0	0	12	44	43	-7	3.5833	$3 \frac{7}{12}$
1	7	3	0	2	9	33	32	-5	3.555555556	$3 \frac{5}{9}$
0	7	2	5	0	6	22	21	-3	3.5	$3 \frac{1}{2}$
0	8	3	0	1	11	39	38	-5	3.454545455	$3 \frac{5}{11}$
0	7	3	2	2	7	25	24	-3	3.428571429	$3 \frac{3}{7}$
1	7	3	1	1	10	35	34	-4	3.4	$3 \frac{2}{5}$
5	7	0	0	0	13	45	44	-5	3.3846	$3 \frac{5}{13}$
2	7	2	2	0	11	37	36	-3	3.272727273	$3 \frac{3}{11}$
0	7	3	3	1	8	27	26	-2	3.25	$3 \frac{1}{4}$
1	7	3	0	3	9	30	29	-2	3.222222222	$3 \frac{2}{9}$
0	8	3	0	2	11	36	35	-2	3.181818182	$3 \frac{3}{11}$
0	7	3	1	4	6	20	19	-1	3.166666667	$3 \frac{1}{6}$
1	7	2	4	0	9	29	28	-1	3.111111111	$3 \frac{1}{9}$
1	7	3	1	2	10	32	31	-1	3.1	$3 \frac{1}{10}$
0	8	3	1	1	12	38	37	-1	3.083333333	$3 \frac{1}{12}$
3	7	2	1	0	14	44	43	-1	3.071428571	$3 \frac{1}{14}$

Table 17: the types when D are nonsingular plane curves

d	ω	g	\bar{g}	\bar{g} / ω	fraction
9	0	28	27	∞	∞
10	5	36	35	7	7
11	11	45	44	4	4
12	18	49	48	2.66666	$\frac{8}{3}$

Table 18: the types when $\widetilde{F}(n)<0$

$n=5$				
σ	B	ν_{1}	$\widetilde{F}(n)_{0}$	$\widetilde{\mathcal{Z}}(n)$
7	1	3	$-44+4 u$	$6 t_{2}+6 t_{3}$
7	1	2	$-48+4 u$	$6 t_{2}$
7	0	2,3	$-42+4 u$	$6 t_{2}+6 t_{3}$
8	1	4	$-32+6 u$	$6 t_{2}+6 t_{3}+4 t_{4}$
8	1	3	$-38+6 u$	$6 t_{2}+6 t_{3}$
8	1	2	$-44+6 u$	$6 t_{2}$
8	0	$2,3,4$	$-16+6 u$	$6 t_{2}+6 t_{3}+4 t_{4}$
9	1	4	$-22+8 u$	$6 t_{2}+6 t_{3}+4 t_{4}$
9	1	3	$-30+8 u$	$6 t_{2}+6 t_{3}$
9	1	2	$-38+8 u$	$6 t_{2}$
9	0	4	$-18+8 u$	$6 t_{2}+6 t_{3}+4 t_{4}$
10	1	4	$-10+10 u$	$6 t_{2}+6 t_{3}+4 t_{4}$
10	1	3	$-20+10 u$	$6 t_{2}+6 t_{3}$
10	1	2	$-30+10 u$	$6 t_{2}$
11	1	3	$-8+12 u$	$6 t_{2}+6 t_{3}$
11	1	2	$-20+12 u$	$6 t_{2}$
12	1	2	$-8+14 u$	$6 t_{2}$

13 bibliography

References

[1] W.Barth, C.Peters, A. van de Ven, Compact Complex surfaces, Ergebnisse der Mathematik,Springer Verlag,1984.
[2] E.Bombieri, Canonical models of surfaces of general types, Publ. Math., I.H.E.S., 42(1973), 171-219.
[3] J.L. Coolidge, A Treatise on Algebraic Plane Curves, Oxford Univ. Press.,(1928).
[4] Oliver Debarre, Higher-dimensional Algebraic Geometry, UTX, Springer, (2001).
[5] R. Hartshorne, Curves with high self-intersection on algebraic surfaces, Publ.I.H.E.S. 36, (1970), 111-126.
[6] S.Iitaka, On irreducible plane curves, Saitama Math. J. 1 (1983), 47-63.
[7] S.Iitaka, Birational geometry of plane curves,Tokyo J. Math., 22(1999), pp289-321.
[8] S.Iitaka, On logarithmic plurigenera of algebraic plane curves, in Research on Birational Properties of Algebraic Curves, Gakushuin University, 2006,Jan.,p $39-112$,also in Iitaka's web page ${ }^{1}$.
[9] S.Iitaka, Relationships between birational invariants ω and σ of algebraic plane curves, in Research on Birational Properties of Algebraic Curves, Gakushuin University, 2010,Feb.,p $51-142$.
[10] S.Iitaka, On birational invariants A and Ω of algebraic plane curves, in Algebraic Geometry, Mejiro, 2010, Gakushuin University, 2011,Feb.,p 139-188.
[11] S.Iitaka, On the nonbirational invariant e of algebraic plane curves, in Birational Geometry of Algebraic Plane Curves and related Topic in Algebraic Geometry, 2010, Gakushuin University, 2010,Feb.,p 165 188.

[^0][12] S.Iitaka, Logarithmic Kodaira dimension and mixed plurigenera, in Research on Birational Properties of Algebraic Curves, Gakushuin University, 2009,Feb.,p $27-66$.
[13] O.Matsuda, On numerical types of algebraic curves on rational surfaces, Research on Birational Geometry of Algebraic Curves, Gakushuin University, 2006,167-174.
[14] M.Nagata, On rational surfaces II, 1960.

Shigeru IITAKA
Department of Mathematics, Faculty of Science
Gakushuin University
Mejiro, Toshima
Tokyo, 171-8588 JAPAN
e-mail:851051@gakushuin.ac.jp

[^0]: ${ }^{1}$ http://www-cc.gakushuin.ac.jp/\%7E851051/iitaka1.htm

