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1 Introduction

Here, we shall study birational properties of algebraic plane curves from the
viewpoint of Cremonian geometry. As a matter of fact, let S be a nonsingular
rational surface and D a nonsingular curve on S. (S,D) are called pairs and
we study such pairs. The purpose of Cremonian geometry is the study of
birational properties of pairs (S,D).

Suppose that m ≥ a ≥ 1. Then Pm,a[D] = dim |mKS + aD| + 1 are
called mixed plurigenera, which depend on S and D. It is my understanding
that these invariants embody the essential geometric properties of the curve
D on S. P1,1[D] turns out to be the genus of D, denoted by g.
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Letting Z stand for KS + D, we see Pm,m[D] = dim |mZ| + 1, called
logarithmic plurigenera of S−D, from which logarithmic Kodaira dimension
is introduced, denoted by κ[D].

Assume that κ[D] = 2 and that there exist no (−1) curves E such that
E · D ≤ 1. Then such pairs are proved to be minimal in the birational
geometry of pairs ([7],[6]).

We start with recalling some basic results in birational geometry of pairs
(S,D).

Minimal pairs are obtained from some kind of singular models, namely,
# minimal pairs which will be defined below. Any nontrivial P1− bundle
over P1 has a section ∆∞ with negative self intersection number, which is
denoted by a symbol ΣB, where −B = ∆∞

2 if B > 0. ΣB is said to be a
Hirzebruch surface of degree B after Kodaira.

Let Σ0 denote the product of two projective lines.
The Picard group of ΣB is generated by a section ∆∞ and a fiber

Fc = pr−1(c) of the P1− bundle, where c ∈ P1 and pr : ΣB → P1 is
the projection.

Let C be an irreducible curve on ΣB. Then C ∼ σ∆∞ + eFc, for some
integers σ and e. Here the symbol ∼ means the linear equivalence between
divisors. We have C · Fc = σ and C ·∆∞ = e−B · σ.

Note that κ[∆∞] = −∞.
Hereafter, suppose that C ̸= ∆∞. Thus C · ∆∞ = e − B · σ ≥ 0 and

hence, e ≥ Bσ. Denoting 2e−Bσ by B̃, we have the formula of the virtual
genus of C denoted by g0:

g0 =
(σ − 1)(B̃ − 2)

2
.

Thus introducing τm by

τm = (σ −m)(B̃ − 2m), (1)

we obtain
(K0 + C)2 = τ2,

where K0 denotes a canonical divisor on ΣB.
Moreover, letting Z0 be K0 + C, we obtain for ν > 0,

νZ0 − (ν − 1)C ∼ C + νK0

(νZ0 − (ν − 1)C) · Z0 = τν+1 − 2(ν − 1)2,
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and
(νZ0 − (ν − 1)C) · C = τν − 2ν2.

1.1 minimal models

Let C be an irreducible curve on ΣB. Then by ν1, ν2, ···, νr we denote the
multiplicities of all singular points (including infinitely near singular points)
of C where ν1 ≥ ν2 ≥ · · · ≥ νr.

C

ΣB

∆∞

σ = 4

Fc

The symbol [σ ∗ e,B; ν1, ν2, · · ·, νr] is said to be the type of (ΣB, C).
When B = 0 ,the symbol is abbreviated as [σ ∗ e; ν1, ν2, · · ·, νr].

Definition 1 The pair (ΣB, C) is said to be # minimal , if

• σ ≥ 2ν1 and e− σ ≥ Bν1.

• Moreover, if B = 1 and r = 0 then assume e− σ > 1.

Using elementary transformations, we get

Theorem 1 If D is not transformed into a line on P2 by Cremona trans-
formations, then κ[D] ≥ 0. In this case, a minimal pair (S,D) is obtained
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from a # minimal pair (ΣB, C) by shortest resolution of singularities of C
using blowing ups except for (S,D) = (P2, Cd), Cd being a nonsingular curve
of degree d > 2.

Theorem 2 If (S,D) is obtained from a # minimal pair (ΣB, C) by shortest
resolution of singularities of C ,then (S,D) is relatively minimal. In other
words,for any (−1) curve Γ on S, Γ ·∆ ≥ 2.

2 basic results

Suppose that (S,D) is a minimal pair with κ[D] = 2, which is obtained
from a # minimal pair(model) (ΣB, C) by shortest resolution of singularities
of C. The type of (ΣB, C) is denoted by the symbol [σ ∗ e,B; ν1, ν2, · · ·, νr].

By
2ω = (D + 3KS) ·D, 2ω0 = (C + 3K0) · C,

and
2g = (D +KS) ·D, 2g0 = (C +K0) · C,

we get

• ω = ω0 −
∑r

j=1

νj(νj − 3)

2
,

• g = g0 −
∑r

j=1

νj(νj − 1)

2
.

By putting X =
∑r

j=1 ν
2
j and Y =

∑r
j=1 νj , we obtain

• 2ω − 2ω0 = −X + 3Y,

• 2g − g0 = −X + Y.

Thus

• X = 3g0 − ω0 − 3g + ω,

• Y = g0 − ω0 − g + ω.

However, from ω0 =
τ3
2 − 9 and g0 = g0 − 1 = τ1

2 − 1, it follows that

• g0 − ω0 = B̃ + 2σ,

• 3g0 − ω0 = B̃σ.
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Consequently we obtain the next equalities:

• Y = B̃ + 2σ + ω − g,

• X = B̃σ + ω − 3g.

2.1 two invariants

We shall compute two invariants B̃ + 2σ and B̃σ by examining the fol-
lowing cases according to the value of B.

(1) B = 0. Then σ = 2ν1 + p, e = σ + u for some u ≥ 0 and

• B̃ + 2σ = 8ν1 + 4p+ 2u,

• B̃σ = 8ν21 + 2ν1(4p+ 2u) + 2pu+ 2p2.

(2) case B = 1. Then σ = 2ν1 + p, e = σ + ν1 + u for some u ≥ 0 and

• B̃ + 2σ = 8ν1 + 3p+ 2u,

• B̃σ = 8ν21 + 2ν1(3p+ 2u) + 2pu+ p2.

(3) B = 2. Then σ = 2ν1 + p, e = 2σ + u for some u ≥ 0 and

• B̃ + 2σ = 8ν1 + 4p+ 2u,

• B̃σ = 8ν21 + 2ν1(4p+ 2u) + 2pu+ 2p2.

Defining w = 4 − δ1B,we get w = 4 if B ̸= 1. Further, w = 3 if B = 1.
Introducing an invariant k by k = wp+ 2u, we have

• B̃ + 2σ = 8ν1 + k,

• B̃σ = 8ν21 + 2kν1 + p(k − 2p).

Proposition 1 Suppose that B ≤ 2. Letting k denote wp + 2u, w being
4− δ1B, we have the following fundamental equalities:

• X = 8ν21 + 2kν1 + k̃ + ω1 − 2g,

• Y = 8ν1 + k + ω1.

Here k̃ = kp− 2p2, ω1 = ω − g.
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2.2 invariant Z̃

Following Matsuda([13]), we shall compute ν1Y − X, which we denote by
Z̃.

By Z̃ = ν1Y −X =
∑r

j=1 νj(ν1 − νj) ≥ 0, we have

0 ≤ Z̃ = ν1(ω − g − k)− k̃ − ω1 + 2g. (2)

2.3 case in which B ≥ 3

By B2 we denote max{B − 2, 0}. Then e = Bσ + u = B2σ + 2σ + u for
some u ≥ 0 and B̃ = 2e−Bσ = B2σ + 2(σ + u).

Moreover, B̃σ = B2σ
2 + 2(σ + u)σ and so

• B̃ + 2σ = B2σ + 8ν1 + k,

• B̃σ = B2σ
2 + 8ν21 + 2kν1 + k̃.

However,these formulas still hold for any B ≥ 0. Thus, we obtain the
following fundamental equalities:

• X = B2σ
2 + 8ν21 + 2kν1 + k̃ + ω1 − 2g,

• Y = B2σ + 8ν1 + k + ω1.

Further , we get

0 ≤ Z̃ = B2σ(ν1 − σ)− kν1 + (ν1 − 1)ω1 + 2g − k̃,

and
B2σ(σ − ν1) ≤ −kν1 + (ν1 − 1)ω1 + 2g − k̃.

If B ≥ 3, then

σ(σ − ν1) ≤ B2σ(σ − ν1) ≤ −kν1 + (ν1 − 1)ω1 + 2g − k̃. (3)

Hence, the following is derived:

Proposition 2 If B ≥ 3,then

2ν21 ≤ σ(σ − ν1) ≤ (ν1 − 1)ω1 + 2g.
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3 estimate of k in terms of ω

We shall prove the following estimate of k.

Proposition 3 If σ ≥ 7 and ν1 ≥ 3 ,then k ≤ ω. Moreover, if g > 0, then
k ≤ ω − 1. Assume k = ω. Then types are as follows:

In the case where p = 0, the type becomes [10 ∗ 11; 59] or its associates.
In the case where p = 1, the type becomes either 1) [(4k+ 3) ∗ (6k+ u+

4), 1; (2k+1)9],where k = 3+2u, u ≥ 0, or 2) [(19+8u)∗(19+9u); (9+4u)9],
where u ≥ 0

In the case where p > 1, p = 2 and the type becomes [28 ∗ 41, 1; 139].

Proof.
First , we shall prove k ≤ ω. From the following fundamental equalities:

we see that Z̃ = ν1Y −X ≥ 0 satisfies

0 ≤ Z̃ = B2(ν1 − σ)σ − kν1 − k̃ + (ν1 − 1)ω − (ν1 − 3)g,

and hence

0 ≤ B2(σ − ν1)σ ≤ −kν1 − k̃ + (ν1 − 1)ω − (ν1 − 3)g

≤ −kν1 + ν1ω − ω + g(3− ν1).

Thus when g ≥ 0, we get

kν1 ≤ ν1ω − ω.

Hence,

k ≤ ω − ω

ν1
< ω.

However, when g = −1, we get

kν1 ≤ ν1ω − ω + ν1 − 3.

Hence,

k − ω ≤ 1− 3 + ω

ν1
< 1.

Therefore, k ≤ ω,since k − ω is an integer.
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3.1 the invariant i

Assume ν1 ≥ 3. Introducing an invariant i by i = ω − k ≥ 0. we shall
enumerate types whenever i ≤ 2.

First, we shall prove that B ≤ 2. Otherwise, we have B2 > 0 and so

B2(σ − ν1)σ ≥ 2ν1
2 ≥ 6ν1.

From

6ν1 ≤ B2(σ − ν1)σ ≤ −kν1 − k̃ + (ν1 − 1)ω − (ν1 − 3)g

≤ −kν1 − k̃ + (ν1 − 1)ω + ν1 − 3

= (ω − k + 1)ν1 − k̃ − ω − 3

= (i+ 1)ν1 − k̃ − k + i− 3

≤ (i+ 1)ν1 + i− 3,

it follows that
5ν1 + 3 ≤ i(ν1 + 1).

Hence,

4 ≤ 5ν1 + 3

ν1 + 1
≤ i.

This contradicts the hypothesis saying i ≤ 2.

3.2 case when k = ω

Assume i = 0, i.e. k = ω and by the previous argument, g = −1.
Supposing that Z̃ > 0, we get Z̃ ≥ ν1 − 1. Hence,

ν1 − 1 ≤ Z̃ ≤ −kν1 + (ν1 − 1)k + g(3− ν1)− k̃

= −k − (3− ν1)− k̃

≤ ν1 − 3.

Thus ν1 − 1 ≤ ν1 − 3, which is a contradiction. Therefore, Z̃ = 0.
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3.3 a formula for i

In general, in the case when B ≤ 2, g = −1 and Z̃ = 0, we obtain the
following formulae from the fundamental equalities :

• ω1 = i+ 1 + k,

• (r − 8)ν1 = k + ω1 = 2k + i+ 1,

• (r − 8)ν21 = 2kν1 + ω1 + k̃ + 2 = 2kν1 + k̃ + i+ k + 3.

Then r ≥ 9 and

ν1 =
2k + i+ 1

r − 8
. (4)

Introducing ρ by ρ = r − 8, these are rewritten as follows:

1. ρν1 = k + ω1 = 2k + i+ 1,

2. ρν21 = 2kν1 + ω1 + k̃ + 2 = 2kν1 + k̃ + i+ k + 3,

3. ρ = r − 8 ≥ 1 ,

4. ρν1 = 2k + i+ 1.

Thus,the formulae (1) and (2) yield

(i+ 1)ρν1 = ρ(k̃ + i+ k + 3).

By (1) we obtain

(i+ 1)(2k + i+ 1) = ρ(k̃ + i+ k + 3), (5)

and
k(2i+ 2− ρ) + (i+ 1)2 = ρ(k̃ + i+ 3). (6)

3.4 case in which i = 0

Suppose that i = 0. From the formula (6), it follows that

k(2− ρ) + 1 = k̃ + 3.

Hence, ρ = 1 ; r = 9 and k + 1 = k̃ + 3; k = k̃ + 2.
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Therefore, from k = k̃ + 2 = p(k − 2p) + 2, it follows that

2p2 − 2 = k(p− 1).

Hence,we get either 1) p = 1 or 2) p ̸= 1; k = 2p+ 2.

In the case when p = 1, we have ν1 = 2k + 1 and k = w + 2u, where
w = 4− δ1B.

If B = 1 then k = 3 + 2u and σ = 2ν1 + p = 4k + 3; e = σ + ν1 + u =
6k + u + 4. Thus the type becomes [(4k + 3) ∗ (6k + u + 4), 1; (2k + 1)9],
where k = 3 + 2u.

Conversely, if the minimal pair (S,D) has this type, then

g = (σ−1)(B̃−2)
2 − 9(2k + 1)k = 0 and D2 = σB̃ − 9(2k + 1)2 = −k − 3.

Thus ω = −3− (−k − 3) = k.

If B = 0 then k = 4 + 2u and ν1 = 2k + 1 = 9 + 4u, σ = 2ν1 + p =
4k + 3 = 19 + 8u. Thus e = σ + u = 19 + 9u and the type becomes
[(19 + 8u) ∗ (19 + 9u); (9 + 4u)9].

Conversely, if the minimal pair (S,D) has this type, then g = 0 and
ω = 4 + 2u = k.

In the case when k = 2p+ 2 and p ̸= 1, we have either p = 0 or p > 1.

If p = 0 then u = 1 and k = 2. Thus ν1 = 2k+1 = 5, σ = 10 and B ≤ 2.

If B = 0 then the type becomes [10 ∗ 11; 59].
If B = 1 then the type becomes [10 ∗ 16, 1; 59].
If B = 2 then the type becomes [10 ∗ 21, 2; 59] or its associates.
Note : The types [10 ∗ 16, 1; 59] and [10 ∗ 21, 2; 59] are said to be the

associates of the type [10∗11; 59]. Hereafter, such associates will be omitted,
for simplicity.

If p > 1 then k = 2p+2 = wp+2u, from which it follows that p = 2, u =
0, w = 3, k = 6 and B = 1.

Moreover, ν1 = 2k + 1 = 13 and σ = 28 and e = 41. Hence, the type
becomes [28 ∗ 41, 1; 139].

Conversely, if the minimal pair (S,D) has this type, then g = 0 and
D2 = −9 and ω = 6 = k.
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Therefore, the proof of Proposition 1 is complete. In that follows we
shall enumerate all possible types whenever i = 1 or 2.

4 formula (FEQ)

Suppose that B ≤ 2 and that a #− minimal pair (ΣB, C) has j1 singular
points with multiplicity ν1−1 and j2 singular points with multiplicity ν1−2.
Moreover, assume that the other singular points have the multiplicity ν1.
Then

• Y = ν1(r − j1 − j2) + j1(ν1 − 1) + j2(ν1 − 2) = rν1 − j1 − 2j2,

• X = ν21(r− j1− j2)+ j1(ν1− 1)2+ j2(ν1− 2)2 = rν21 − 2j1ν1− 4j2ν1+
j1 + 4j2.

From the fundamental equalities, we obtain

ρν1 = j1 + 2j2 + k + ω1,

= j1 + 2j2 + 2k + i− g

and

ρν21 = 2j1ν1 + 4j2 − j1 − 4j2 + 2kν1 + k̃ + k + i− 3g

= j1 + 2j2 + k + ω − g + k̃ + ω1 − 2g.

But from
ρν21 = (j1 + 2j2 + 2k + i− g)ν1

it follows that

k(2i−2j1−4j2−2g−ρ)+(g−i)2−(j1+2j2)
2 = ρ(k̃+i−3g−j1−4j2). (7)

This will be referred to as the formula (FEQ).

Proposition 4 When B ≤ 2 and a #− minimal pair (ΣB, C) has j1 sin-
gular points with multiplicity ν1 − 1 and j2 singular points with multiplicity
ν1−2, and the other singular points have the multiplicity ν1, the next equal-
ities hold.
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k(2i−2j1−4j2−2g−ρ)+(g− i)2−(j1+2j2)
2 = ρ(k̃+ i−3g−j1−4j2) (8)

and
ρν1 = j1 + 2j2 + 2k + i− g.

5 case when j1 = j2 = 0

Assuming j1 = j2 = 0, we have from (FEQ) the next equality:

k(2i− 2g − ρ) + (g − i)2 = ρ(k̃ + i− 3g).

5.1 case when g = 0

Suppose that g = 0. Then

k(2i+ 2− ρ) + (1 + i)2 = ρ(k̃ + i+ 3)

and
ρν1 = 2k + i+ 1.

We shall study the types when i = 1, 2.

5.1.1 case when i = 1

If i = 1 then the formula (FEQ) turns out to be

k(4− ρ) + 4 = ρ(k̃ + 4).

Then ρ = 1 or 2 or 3.
i) Suppose that ρ = 1. Then 3k + 4 = k̃ + 4. Hence,

3k = k̃ = p(k − 2p).

From 2p2 = (p− 3)k, it follows that

2(p+ 3) +
18

p− 3
= k ≥ 3p.

We obtain the next table.
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Table 1: case when g = 0, i = 1, ρ = 1, B = 1

p− 3 p 2(p+ 3) 18/(p− 3) k ν1 σ e 3p u

1 4 14 18 32 66 136 212 12 10
2 5 16 9 25 52 109 166 15 5
3 6 18 6 24 50 106 159 18 3
6 9 24 3 27 56 121 177 27 0

Conversely, if the type of the pair (S,D) is [136 ∗ 212, 1; 669],then g =
0, ω = 33, k = 32.

If the type of the pair is [109 ∗ 166, 1; 529],then g = 0, ω = 26, k = 25.
If the type of the pair is [106 ∗ 159, 1; 509],then g = 0, ω = 25, k = 24.
If the type of the pair is [121 ∗ 177, 1; 569],then g = 0, ω = 28, k = 27.

Table 2: case when g = 0, i = 1, ρ = 1, B = 0

p− 3 p 2(p+ 3) 18/(p− 3) k ν1 σ e 4p u

1 4 14 18 32 66 136 144 16 8
3 6 18 6 24 50 106 106 24 0

Conversely, if the type of the pair (S,D) is [136 ∗ 144; 669],then g =
0, ω = 33, k = 32, Z2 = 31.

If the type of the pair (S,D) is [106 ∗ 106, 1; 509],then g = 0, ω = 25, k =
24.

ii) Suppose that ρ = 2. Thus ν1 = k + 1, k + 2 = k̃ + 4. Hence,

2p2 − 2 = (p− 1)k.

a) If p ̸= 1 then 2p+ 2 = k = wp+ 2u, where w = 3 or 4.

If B = 1, we obtain p = 2, k = 6, u = 0, ν1 = 7. Then σ = 2ν1 + p =
16, e = 16+7 = 23. Thus the type is [16 ∗ 23, 1; 710]. Conversely, if the type
is this, then ω = 7, g = 0, k = 6.

If B = 0, we obtain p = 0, k = 2, u = 1. Thus, 2ν1 = ρν1 = 2k + i− g =
5− g ≤ 6. Hence, ν1 = 3, σ = 6. But σ ≥ 7 was assumed.
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b) If p = 1 then k̃ = k − 2. But B = 1 or B = 0.
If B = 1, then k = 3+2u; ν1 = k+1, σ = 2ν1+ p = 9+4u, e = 13+7u.

Thus the type is [(9 + 4u) ∗ (13 + 7u), 1; (4 + 2u)10].
Conversely, if the pair has this type, then ω = 4 + 2u, g = 0 and k =

3 + 2u.

If B = 0, then k = 4+2u; ν1 = k+1 = 5+2u, σ = 2ν1+p = 11+4u, e =
11 + 5u. Thus the type is [(11 + 4u) ∗ (11 + 5u); (5 + 2u)10].

Conversely, if the pair has this type, then ω = 5 + 2u, g = 0 and k =
4 + 2u.

iii) Suppose that ρ = 3. Then 3k̃ = k − 8 and

k − 8 = 3k̃ = 3(p(k − 2p)).

Hence,
6p2 − 8 = (3p− 1)k ≥ 3p(3p− 1) = 9p2 − 3p.

From this it follows that

3p− 6 ≥ 3p− 8 ≥ 3p2.

Hence, p− 2 ≥ p2. This is a contradiction.

5.1.2 case when i = 2

If i = 2 then the formula (FEQ) turns out to be

k(6− ρ) + 9 = ρ(k̃ + 5).

Since k̃ = p(k − 2p), it follows that

k(pρ+ ρ− 6) = 2p2ρ− 5ρ+ 9.

But recalling k = wp+ 2u ≥ 3p, we obtain

2p2ρ− 5ρ+ 9 = k(pρ+ ρ− 6) ≥ 3p(pρ+ ρ− 6) = 3p2ρ+ 3p(ρ− 6).

Thus
−5ρ+ 9− 3p(ρ− 6) ≥ p2ρ.
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Hence,
9 + 18p ≥ ρ(p2 + 3p+ 5),

and
9 + 18p

p2 + 3p+ 5
≥ ρ. (9)

Therefore,

• if p ≤ 2 then ρ ≤ 3;

• if 3 ≤ p ≤ 5 then ρ ≤ 2;

• if 6 ≤ p then ρ = 1.

Hence, ρ ≤ 3.

i) Assume that ρ = 1. Then r = 9 and k̃+5 = 5k+9. From k̃ = p(k−2p),
it follows that

2p2 + 4 = k(p− 5). (10)

Then p > 5 and we obtain

2(p+ 5) +
54

p− 5
= k. (11)

Then the following two tables are gotten.

Table 3: g = 0, i = 2, B = 1

p− 5 p 2(p+ 5) 54/(p− 5) k ν1 σ e 3p u

1 6 22 54 76 155 316 500 18 29
2 7 24 27 51 105 217 337 21 15
3 8 26 18 44 91 190 291 24 10
6 11 32 9 41 85 181 270 33 4
9 14 38 6 44 91 196 288 42 1

Conversely, if the type is [316 ∗ 500, 1; 1559],then g = 0, ω = 78, k = 76.
If the type is [217 ∗ 337, 1; 1059],then g = 0, ω = 53, k = 51.
If the type is [190 ∗ 291, 1; 919],then g = 0, ω = 46, k = 44.
If the type is [181 ∗ 270, 1; 859],then g = 0, ω = 43, k = 41.
If the type is [196 ∗ 288, 1; 919],then g = 0, ω = 46, k = 44.
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Table 4: g = 0, i = 2, B = 0

p− 5 p 2(p+ 5) 54/(p− 5) k ν1 σ e 4p u

1 6 22 54 76 155 316 342 24 26
3 8 26 18 44 91 190 196 32 6

Conversely, if the type is [316∗342; 1559],then g = 0, ω = 78, k = 76, Z2 =
76.

If the type is [190 ∗ 196; 919],then g = 0, ω = 46, k = 44, Z2 = 44.

ii) Assume that ρ = 2. Then

4k + 9 = 2(k̃ + 5).

Thus 9 = 2(k̃ + 5)− 4k, which is a contradiction.

iii) Assume that ρ = 3. Then k + 3 = k̃ + 5; hence, k = k̃ + 2 and

3ν1 = ρν1 = 2k + i+ 1 = 2k + 3.

Then k = k̃ + 2 = p(k − 2p). ;thus, (p− 1)k = 2(p2 − 1).
a).If p = 1 then k̃ = k − 2 and so k = w + 2u, where w = 3 or 4.
If B = 1 then w = 3, k = 3 + 2u and

3ν1 = ρν1 = 2k + i+ 1 = 2k + 3 = 9 + 4u.

From 3(ν1 − 3) = 4u, it follows that ν1 − 3 = 4L, u = 3L, for some L.
Then σ = 8L+7, e = 15L+10 and the type is [(8L+7)∗(15L+10), 1; (3+

4L)11].
Conversely, if the type of the pair (S,D) is this , then g = 0, ω =

5 + 6L, k = 3 + 6L.

If B = 1 then w = 4, k = 4 + 2u and 3ν1 = 2k + 3 = 11 + 4u.
From 3(ν1 − 5) = 4(u − 1), it follows that ν1 − 5 = 4L, u = 3L + 1, for

some L. Then σ = 8L+11, e = 11L+12 and the type is [(8L+11) ∗ (11L+
12); (5 + 4L)11].

Conversely, if the type of the pair (S,D) is this , then g = 0, ω =
8 + 6L, k = 6 + 6L.
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5.2 case when g = 1

Suppose that g = 1. Then

k(2i− ρ) + i2 = ρ(k̃ + i).

This implies that i > 0. We shall enumerate the types when i = 1, 2.

5.2.1 case when i = 1

If i = 1 then k(2 − ρ) + 1 = ρ(k̃ + 1). Thus ρ = 1 , ν1 = 2k + 1 and
k + 1 = k̃ + 1. Hence,

k = k̃ = p(k − 2p).

Thus
2p2 − 2 + 2 = (p− 1)k,

and

2(p+ 1) +
2

p− 1
= k

Hence, p− 1 = 1 or 2.

If p = 2 then k = 8 = 2w + 2u.
In the case when B = 1, we obtain u = 1, ν1 = 2k+1 = 17, σ = 2ν1+p =

34 + 2 = 36 and e = 36 + 17 + 1 = 54. Thus the type is [36 ∗ 54, 1; 179].
Conversely, if the type is this, then ω = 9, g = 1.

In the case when B = 0, we obtain u = 0, ν1 = 2k+1 = 17, σ = 2ν1+p =
34 + 2 = 36 and e = 36. Thus the type is [36 ∗ 36; 179].

Conversely, if the type is this, then ω = 9, k = 8, g = 1.

If p = 3 then k = 9 = 3w+2u,w = 3, u = 0 and the type is [41∗60, 1; 199].
Conversely, if the type is this, then ω = 10, k = 9, g = 1.

5.2.2 case when i = 2

If i = 2 then
k(4− ρ) + 4 = ρ(k̃ + 2).

Then ρ = 1 or 2 or 3.
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i) Assume that ρ = 1. Then ν1 = 2k + 2 , r = 9 and 3k + 4 = k̃ + 2.
From k̃ = p(k − 2p), it follows that

2p2 + 2 = (p− 3)k. (12)

Thus

2(p+ 3) +
20

p− 3
= k.

Table 5: case when ρ = 1 and g = 1, i = 2, B = 1

p− 3 p 2(p+ 3) 20/(p− 3) k ν1 σ e 3p u

1 4 14 20 34 70 144 225 12 11
4 7 20 5 25 52 111 165 21 2
5 8 22 4 26 54 116 171 24 1
10 13 32 2 34 70 153 220.5 39 none

Conversely, if the type is [144 ∗ 225, 1; 709],then g = 1, ω = 36, k = 34.
If the type is [111 ∗ 165, 1; 529],then g = 1, ω = 27, k = 25.
If the type is [116 ∗ 171, 1; 549],then g = 1, ω = 26, k = 24.

Table 6: case when ρ = 1 and g = 1, i = 2, B = 0

p− 3 p 2(p+ 3) 20/(p− 3) k ν1 σ e 4p u

1 4 14 20 34 70 144 153 16 9
2 5 16 10 26 54 113 116 20 3

Conversely, if the type is [144 ∗ 153; 709],then g = 1, ω = 36, k = 34.
If the type is [113 ∗ 116; 549],then g = 1, ω = 28, k = 26.

ii) Assume that ρ = 2. Then ν1 = k + 1 , r = 19 and 2k + 4 = 2(k̃ + 2).
Hence, k + 2 = k̃ + 2. From k̃ = p(k − 2p), it follows that

2p2 = (p− 1)k. (13)

Thus

2(p+ 1) +
2

p− 1
= k.
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Hence p = 2 or 3. If p = 2 then k = 8, ν1 = 9. In the case when B = 1,
we obtain u = 1, ν1 = k + 1 = 9. Then σ = 2ν1 + p = 18 + 2 = 20 and
e = 20 + 9 + 1 = 30. Thus the type becomes [20 ∗ 30, 1; 99].

In the case when B = 0, we obtain u = 0, ν1 = k + 1 = 9. Then
σ = 2ν1 + p = 18 + 2 = 20 and e = 20 + 1 = 21. Thus the type becomes
[20 ∗ 21; 99].

In both cases, if the type is one of these, then g = 1, ω = 10, k = 8.

If p = 3 then k = 9, ν1 = 10, k = 9, B = 1. Then σ = 2ν1 + p = 23 and
e = 23 + 10 = 33. Thus the type becomes [23 ∗ 33, 1; 109].

If the type of the pair (S,D) is this, then g = 1, ω = 11, k = 9.

iii) Assume that ρ = 3. Then k + 4 = 3k̃ + 6. Hence, k − 2 = 3k̃. From
k̃ = p(k − 2p), it follows that

6p2 − 2 = (3p− 1)k ≥ 3p · (3p− 1). (14)

Thus
6p2 > 6p2 − 2 ≥ 3p · (3p− 1) = 9p2 − 3p.

Hence, 3p > 3p2. This is a contradiction.

5.3 case when g = 2

Suppose that g = 2. Then

k(2i− 2− ρ) + (i− 1)2 = ρ(k̃ + i− 3).

Moreover, since ρν1 = i − 1 + 2k and i ≤ 2, it follows that ρ > 0. Hence,
i = 2.

Therefore, k(2− ρ) + 1 = ρ(k̃− 1). Thus ρ = 1 and so k̃ = k+2. Hence,

(p− 1)k = 2p2 + 2.

Thus p > 1 and

2p+ 2 +
4

p− 1
= k.

Hence, we obtain 1) p = 2,or 2) p = 3 or 3) p = 5.
1) p = 2. k = 6+4 = 10 and B = 1, u = 2. Hence, ρν1 = i−1+2k = 21.

We obtain three cases i) ρ = 1, ν1 = 21 ,ii) ρ = 3, ν1 = 7 iii) ρ = 7, ν1 = 3 to
examine, separately.

20



i) ρ = 1, ν1 = 21. Then σ = 44, e = 67.
Thus the type becomes [44 ∗ 67, 1; 219].
If the type of the pair (S,D) is this, then g = 2, Z2 = 12, ω = 12, k = 10.

ii) ρ = 3, ν1 = 7. Then σ = 16, e = 25. Thus the type becomes [16 ∗
25, 1; 711]. However, if the type of the pair (S,D) is this, then g = 9, ω =
19, k = 10.

iii) ρ = 7, ν1 = 3. Then σ = 8, e = 213. Thus the type becomes [8 ∗
13, 1; 315]. However, if the type of the pair (S,D) is this, then g = 11, ω =
21, k = 10.

In the cases 2) and 3), it is easy to derive contradictions.

5.4 case when g > 2

Suppose that g ≥ 2, we obtain

kν1 ≤ −k̃ + (ν1 − 1)ω − (ν1 − 3)g ≤ −k̃ + (ν1 − 1)ω − 2(ν1 − 3).

Hence,
(k + 2)ν1 ≤ −k̃ + ν1ω + 6− ω

and so

k + 2 ≤ −k̃ + ω +
6− ω

ν1
. (15)

Since ω − k ≤ 2, it follows that 6− ω ≥ 0.
If ω = 6 then k̃ = 0, k = 4. Moreover, since g ≥ 2, it follows that

Z̃ = ν1(2− g)− 6 + 3g ≤ 0.

Hence, g = 2, Z̃ = 0. Thus,

Y = rν1 = 8ν1 + k + ω1 = 8ν1 + 4 + 6− 2 = 8ν1 + 8,

and ρν1 = 8. Thus we have either i) ρ = 1, ν1 = 8 or ii) ρ = 2, ν1 = 4.

i) ρ = 1, ν1 = 8. Then σ = 16, u = 2. The type becomes [16 ∗ 18; 89].
If the type of the pair (S,D) is this , then g = 3, ω = 6, k = 4.

ii) ρ = 2, ν1 = 4. Then σ = 8, u = 2. The type becomes [8 ∗ 10; 410].
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If the type of the pair (S,D) is this , then g = 3, ω = 6, k = 4.

If 4 ≤ ω ≤ 5 then by the inequality (15), we have k̃ = 0, k = 2u, ω = k+2.
Hence we get ω = 4, k = 2. By ρν1 = 2k + i − g = 6 − g, g ≥ 2 we get

g = 2, ρν1 = 4. Hence, ρ = 1, ν1 = 4, σ = 8, e = 9, r = 9.
The type becomes [8∗9; 49]. However,if the type of the pair (S,D) is this

, then g = 2, ω = 3, k = 2, i = 1.
If ω = 3 then ω = k + i; hence, i = 1, k = 2. By (15), we get ν1 = 3, p =

0, σ = 6.

6 case when j1 = 1, j2 = 0

Supposing that j1 = 1, j2 = 0, we obtain

ρν1 = i+ 1− g + 2k. (16)

Since ν1 − 1 = Z̃, it follows that

ν1 − 1 = Z̃ ≤ −kν1 − k̃ + (ν1 − 1)ω − (ν1 − 3)g.

Thus
(1 + k)ν1 ≤ (ν1 − 1)ω − (ν1 − 3)g + 1.

6.1 case when g ≥ 1

Supposing that g ≥ 1, we get

(2 + k)ν1 ≤ (ν1 − 1)ω + 4 = ν1ω − ω + 4.

Hence, if i ≤ 2, then g = 1, ω = 4, k = 2; i = 2, B = 0, u = 1, p = 0. Thus,

ρν1 = i+ 1− g + 2k = 2 + 2k = 6.

We have two cases i) ρ = 1, ν1 = 6 or ii) ρ = 2, ν1 = 3.

i) ρ = 1, ν1 = 6. Then we obtain σ = 12, e = 13, r = 9. Thus the type
becomes [12 ∗ 13; 68, 5].

Conversely, if the type of the pair (S,D) is this , then g = 2, ω = 4, k = 2.

ii) ρ = 2, ν1 = 3. we obtain σ = 6, e = 7, r = 10, and so the type becomes
[6 ∗ 7; 39, 2]. But σ ≥ 7 was assumed.
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6.2 case when g = 0

Assume g = 0. Then the formula (FEQ) turns out to be

k(2i− ρ) + (i+ 1)2 − 1 = ρ(k̃ + i+ 2).

6.2.1 case when i = 1

Suppose that i = 1. Then k(2 − ρ) + 3 = ρ(k̃ + 3). Hence ρ = 1. Thus
k = k̃, which implies

2p2 − 2 + 2 = (p− 1)k.

In other words,

2p+ 2 +
2

p− 1
= k.

Hence, p = 2 or 3.
i) If p = 2 then k = 8 and ν1 = 2k + 3.
In the case when B = 1, we obtain ν1 = 2k + 3 = 19, k = 8 = 3 · 2 + 2u;

u = 1. Hence σ = 38 + 2 = 40, e = 40 + 19 + 1 = 60. Therefore, the type
becomes [40 ∗ 60, 1; 198, 18].

Conversely, if the type of the pair (S,D) is this ,then g = 0, ω = 9, k = 8.

In the case when B = 0, we obtain ν1 = 2k + 3 = 19, k = 8 = 4 · 2 + 2u;
u = 0. Hence σ = 38 + 2 = 40, e = 40. Therefore, the type becomes [40 ∗
40; 198, 18]. Conversely,if the pair has this type, then g = 0, ω = 9, k = 8.

ii) If p = 3 then k = 9 and ν1 = 2k + 3 = 21. Thus B = 1, u = 0. σ =
42+3 = 45, e = 45+21 = 66. Therefore, the type becomes [45∗66, 1; 218, 20].
Conversely, if the pair has this type ,then g = 0, ω = 10, k = 9, Z2 = 8.

6.3 case when i = 2

Suppose that i = 2. Then

k(4− ρ) + 8 = ρ(k̃ + 4) = ρ(p(k − 2p) + 4).

Further,
k(4− ρ) + 8− 4ρ = ρpk − 2p2ρ.
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Hence,

2p2ρ+ 8− 4ρ = k(ρp+ ρ− 4) ≥ 3p(ρp+ ρ− 4) = 3p2ρ+ 3pρ− 12p.

Therefore,
12p+ 8

p2 + 3p+ 4
≥ ρ.

Hence, ρ ≤ 2.

i) Suppose that ρ = 1. Then

3k + 4 = pk − 2p2.

Hence,
2p2 + 4 = (p− 3)k

and p ≥ 4. Thus

2(p+ 3) +
22

p− 3
= k.

Since k ≥ 3p , we obtain the following tables.

Table 7: case when ρ = 1, B = 1

p− 3 p 2(p+ 3) 22/(p− 3) k ν1 σ e 3p u

1 4 14 22 36 76 156 244 12 12
2 5 16 11 27 58 121 185 15 6

Conversely, if the type is [156∗244, 1; 768, 75],then g = 0, ω = 38, k = 36.
If the type is [121 ∗ 185; 588, 57],then g = 0, ω = 29, k = 27.

Table 8: case when ρ = 1, B = 0

p− 3 p 2(p+ 3) 22/(p− 3) k ν1 σ e 4p u

1 4 14 22 36 76 156 168 16 12
2 5 16 11 27 58 121 127 20 6

Conversely, if the type is [156 ∗ 168; 768, 75],then g = 0, ω = 38, k = 36.
If the type is [121 ∗ 127; 588, 57],then g = 0, ω = 29, k = 27.
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ii) Suppose that ρ = 2. Then ν1 = k + 2 and

2k + 8 = 2(k̃ + 4) = 2(p(k − 2p) + 4).

Hence,
2p2 = (p− 1)k

and then

2(p+ 1) +
2

p− 1
= k.

If p = 2, then k = 8 and ν1 = 10 and σ = 22.
If B = 1 then σ = 22, e = 33. Therefore, the type becomes [22 ∗

33, 1; 109, 9].
Conversely, if the pair has this type, then g = 0, ω = 10, k = 8.
If B = 0 then σ = 22, e = 22. Therefore, the type becomes [22∗22; 109, 9].
Conversely, if the pair has this type, then g = 0, ω = 10, k = 8.

If p = 3, then k = 9 and ν1 = 11 and σ = 25, e = 36. Therefore, the
type becomes [25 ∗ 36, 1; 119, 10]. Conversely,if the pair has this type, then
g = 0, ω = 11, k = 9, Z2 = 8.

6.4 case when g = 1

Suppose that g = 1. Then

k(2i− 2− ρ) + i2 − 1 = ρ(k̃ + i− 1),

and i = 2 and ρ = 1. Thus ν1 = 3 + 2k and k + 2 = k̃. Accordingly,

2p+ 2 +
4

p− 1
= k.

Hence, we obtain the following tables.

Table 9: case when ρ = 1 and i = 2; B = 1

p− 1 p 2(p+ 1) 4/(p− 1) k ν1 σ e 3p u

1 2 6 4 10 23 48 73 6 2
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Table 10: ρ = 1 and i = 2; B = 0

p− 1 p 2(p+ 1) 4/(p− 1) k ν1 σ e 4p u

1 2 6 4 10 23 48 49 8 1

Conversely, if the pair has the type [48 ∗ 73, 1; 238, 22],then g = 1, ω =
12, k = 10.

Conversely, if the pair has the type [48 ∗ 49; 238, 22],then g = 1, ω =
12, k = 10, Z2 = 11.

7 case when j1 = 2, j2 = 0

Supposing that j1 = 2, j2 = 0, we obtain

ρν1 = i+ 1− g + 2k. (17)

Since 2ν1 − 2 = Z̃, it follows that

2ν1 − 2 ≤ Z̃ ≤ −kν1 − k̃ + (ν1 − 1)ω − (ν1 − 3)g.

Thus
(2 + k)ν1 ≤ (ν1 − 1)ω − (ν1 − 3)g + 2.

7.1 case when g ≥ 0

Supposing that g ≥ 0, we get

(2 + k)ν1 ≤ (ν1 − 1)ω + 2.

Hence, it follows that

2 + k ≤ k + 2 +
2− ω

ν1
.

Therefore,since i = ω − k ≤ 2, we obtain ω = 2, g = 1, k = 0, B = 0. Then

Y = (r − 2)ν1 + 2(ν1 − 1) = rν1 − 2 = 8ν1 + ω = 8ν1 + 2.

Thus ρν1 = 4, which implies ρ = 1, ν1 = 4.
Therefore, the type becomes [8 ∗ 8; 47, 32].
Conversely,if the pair has this type, then g = 1, ω = 2, k = 0.
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7.2 case when g = 0

The formula (FEQ) turns out to be

k(2i− 2− ρ) + (i+ 1)2 − 4 = ρ(k̃ + i+ 1).

Since i ≤ 2, it follows that i = 2. Hence, ρν1 = 5 + 2k and

k(2− ρ) + 5 = ρ(k̃ + 3).

Hence, ρ = 1 and k + 2 = k̃ = p(k − 2p). Thus 2p2 + 2 = (p− 1)k; hence,

2p+ 2 +
4

p− 1
= k.

This induces p = 2 or 3 or 5.
But, if p = 3 then k = 10, B = 1, u = 0. By the way, k = 3p + 2u = 9,

which contradicts k = 10.
Moreover, if p = 5 then k = 10, B = 1, u = 0. By the way, k = 3p+2u =

9, which contradicts k = 10.

Table 11: case when B = 1

p− 1 p 2p+ 2 4/(p− 1) k u ν1 σ e 3p+ 2u

1 2 6 4 10 2 25 52 79 10

Consequently, the type becomes [52 ∗ 79, 1; 257, 242].

Table 12: case when B = 0

p− 1 p 2p+ 2 4/(p− 1) k u ν1 σ e 4p+ 2u

1 2 6 4 10 1 25 52 53 10

Consequently, the type becomes [52 ∗ 53; 257, 242].
Conversely,if the type of (S,D) is this, then g = 0, ω = 12, Z2 = 10.

8 case when j1 = 0, j2 = 1 or t2 = 1
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Assume j1 = 0 and either j2 = 1 or t2 = 1. Then 2ν1−4 = Z̃ and hence,

2ν1 − 4 ≤ −kν1 − k̃ + (ν1 − 1)ω − (ν1 − 3)g.

Thus
(2 + k)ν1 ≤ (ν1 − 1)ω − (ν1 − 3)g + 4.

8.1 case when g > 0

Suppose that g ≥ 0. Then

(2 + k)ν1 ≤ ν1ω + 4− ω.

Hence, ω = 4, k = 2, g = 1.
We have either i) t2 = 1 or ii) tν1−2 = 1.

i) t2 = 1. Then by Y = 8ν1 + 2 + ω = (r − 1)ν1 + 2, we get

(ρ− 1)ν1 = k + 2 = 4.

Hence, ν1 = 4, r = 10.
Consequently, the type becomes [8 ∗ 9; 49, 2].
Conversely, if the pair has this type , then g = 1, ω = 4, k = 2.

ii) tν1−2 = 1, ν1 > 4. Then by Y = 8ν1 + 2 + ω = rν1 − 2, we get

ρν1 = i+ 2− g + 2k = k + 6 = 8.

Thus, we have ρ = 1, ν1 = 8. Then the type becomes [16 ∗ 17; 88, 6].
Conversely, if the pair has this type , then g = 1, ω = 4, k = 2, g =

1, Z2 = 3.

8.2 case when g = 0

Suppose that g = −1. Then we have two cases a) tν1−2 = 1 and b)
t2 = 1.

In the case a), the formula (FEQ) turns out to be

k(2i− 2− ρ) + (i+ 1)2 − 16 = ρ(k̃ + i− 1).
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Since i ≤ 2, it follows that i = 2 and that

k(2− ρ) + 9− 16 = ρ(k̃ + 1).

Hence, ρ = 1 and

2p2 − 2 + 6 = (p− 1)k ≥ 3p2 − 3p.

Therefore,

k = 2p+ 2 +
6

p− 1
.

Hence, we obtain the following table.

Table 13:

p− 1 p 2p+ 2 6/(2p+ 2) k ν1 = 2k + 5 u σ e

1 2 6 6 12 29 3 60 92
2 3 8 3 11 27 1 57 85
3 4 10 2 12 29 0 62 91

Consulting this table,if p = 2, then we obtain the following types:
B = 1. Then u = 3 and the type becomes [60 ∗ 92, 1; 298, 27].
Conversely, if the pair has this type , then g = 0, ω = 14, k = 12, Z2 = 12.
B = 0. Then u = 2 and the type becomes [60 ∗ 62; 298, 27].
Conversely, if the pair has this type , then g = 0, ω = 14, k = 12, Z2 = 12.

In the case b), we have j1 = j2 = 0, t2 = 1 and that g = −1.
By the way since Y = ν1(r − 1) + 2 and X = ν21(r − 1) + 4 we obtain

• (ρ− 1)ν1 = k + ω − g − 2 = 2k + i− g − 2,

• (ρ− 1)ν21 = −4 + 2kν1 + k̃ + ω − 3g = −4 + 2kν1 + k̃ + k + i− 3g.

By

(ρ− 1)ν21 = −4 + 2kν1 + k̃ + k + i− 3g = 2k + i− g − 2)ν1

we get
(i− g − 2)ν1 = −4 + k̃ + k + i− 3g.

Thus,

(i− g − 2)(2k + i− g − 2) = (−4 + k̃ + k + i− 3g)(ρ− 1).
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Putting g = −1, we get

(i− 1)(2k + i− 1) = (k̃ + k + i− 1)(ρ− 1).

Since i ≤ 2, it follows that i = 2 and therefore,

2k + 1 = (k̃ + k + 1)(ρ− 1) = (k̃ + 1) + (ρ− 1) + k(ρ− 1).

Then ρ− 1 > 0 and hence,

k(3− ρ) = (k̃ + k + 1)(ρ− 1)− 1 > 0.

Thus, ρ = 2 and finally, we obtain k̃ = k and so 2p2 − 2 + 2 = k. Then we
get either 1) p = 2; hence k = 8 = 3× 2 + 2 or k = 8 = 4× 2 or 2) p = 3 ;
hencek = 9. By ν1 = (ρ− 1)ν1 = k + ω − g − 2 = 2k + 2 + 1− 2 = 2k + 1,
we get

1). k = 8, ν1 = 2k + 1 = 17. If B = 1 then u = 1 else if B = 0 then
u = 0. Then we have the following cases:

i) B = 1. Thus σ = 2ν1 + p = 36, e = σ + u + ν1 = 54 and the type
becomes [36 ∗ 54, 1; 179, 2].

ii) B = 0. Thus the type becomes [36 ∗ 36; 179, 2].
Conversely, if the pair has this type , then g = 0, ω = 10, k = 8.

2) p = 3. Then k = 9, ν1 = 2k + 1 = 19, u = 0, B = 1. Thus the type
becomes [41 ∗ 60, 1; 199, 2].

Conversely, if the pair has this type , then g = 0, ω = 11, k = 9.

9 case when Z̃ ≥ 3(ν1 − 3)

Suppose that k > 0, ν1 ≥ 3 and Z̃ ≥ 3(ν1 − 3).
From definition, it follows that

3(ν1 − 3) ≤ Z̃ = ν1Y −X (18)

= −kν1 + (ν1 − 1)ω + (3− ν1)g − k̃ (19)

≤ −kν1 + (ν1 − 1)ω − (3− ν1)− k̃ (20)

(21)
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and that
(k + 2)ν1 ≤ (ν1 − 1)ω − k̃ + 6.

Hence,

k + 2 ≤ ν1 ≤ ω +
6− ω − k̃

ν1
. (22)

Thus we have three cases 1) 6 − ω − k̃ < 0 , 2) 6 − ω − k̃ = 0 and 3)
6− ω − k̃ > 0 .

1) 6 − ω − k̃ < 0. Then k ≤ ω − 3. Hence, i ≥ 3, which contradicts the
hypothesis: i ≤ 2.

2) 6 − ω − k̃ = 0. Then from the formula (22), it follows that k + 2 ≤
ω = k + i. Hence, i = 2. Thus the formula (18) induces

k + 3 + g ≤ ω +
3g + 9− ω − k̃

ν1
.

By

1 + ω − 2 + g = k + 3 + g ≤ ω +
3g + 9− ω − k̃

ν1
= ω +

3g

ν1
,

we get
ν1g ≤ 3g.

We have two cases I) ν1 ≥ 4 and II) ν1 = 3 to examine ,separately.

9.1 case when ν1 ≥ 4

I) ν1 ≥ 4. Then g = 0. Since 6 = ω − k̃ and ω = k + 2, it follows that
k̃ + k = 4. Then k = 3 or 4. To verify this we examine the following two
cases:

If k̃ > 0 then p > 0 and so k ≥ 3. Hence, k̃ = 1 and k = 3, which implies
that p = 1, B = 1, u = 0.

If k̃ = 0 then p = 0 and so k = 2u = 4.
By the way, from the next formulae :

• Y = 8ν1 + k + ω + 1 = 8ν1 + 2k + 3,

• X = 8ν21 + 2kν1 + k̃ + ω + 3 = 8ν21 + 2kν1 + k̃ + k + 5,
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it follows that

Z̃ = ν1Y −X = 3ν1 − (k̃ + k + 5) = 3ν1 − 9.

Letting a = tν1−1, b = tν1−2 + t2, c = t3 + tν1−3, we obtain

a(ν1 − 1) + 2b(ν1 − 2) + 3c(ν1 − 3) = 3ν1 − 9.

If c = 0 then (a+ 2b− 3)ν1 = a+ 4b− 9. Since ν1 ≥ 3, it follows that

3(a+ 2b− 3) ≤ a+ 4b− 9.

Hence, 3a+4b ≤ a+4b, which implies a = b = 0. Therefore,a = b = 0, c = 1.
From t3 + tν1−3 = 1, it follows that i) t3 = 0, tν1−3 = 1 or ii) t3 =

1, tν1−3 = 0.
Hence, we have either i) Y = ν1(r − 1) + ν1 − 3 = ν1r − 3 or ii) Y =

ν1(r − 1) + 3.

i) Y = ν1r − 3. Then by making use of Y = 8ν1 + 2k + 3 we get
ρν1 = 2k + 6 , where ρ = r − 8.

Then we have the following cases to examine, separately.

1) k = 4. Then p = 0, B = 0, ω1 = 7. Hence, ρν1 = 14. Thus ν1 = 14 or
7, for ν1 > 3 by hypothesis.

If ν1 = 14 then ρ = 1, r = 9, σ = 28, e = σ + u = 30. The type turns out
to be [28 ∗ 30; 148, 11]. If the pair has this type ,then g = 0, ω = 6, k = 4.

If ν1 = 7 then ρ = 2, r = 10, σ = 14, e = σ + u = 16. The type turns out
to be [14 ∗ 16; 79, 4]. If the pair has this type ,then g = 0, ω = 6, k = 4.

2) k = 3. Then p = 1, B = 1, u = 0, ω1 = 7. Hence, ρν1 = 12. Thus
ν1 = 12 or 6, for ν1 > 3 by hypothesis. Hence,

If ν1 = 12 then ρ = 1, r = 9, σ = 25, e = σ+u+ ν1 = 37. The type turns
out to be [25∗37, 1; 128, 9]. If the pair has this type ,then g = 0, ω = 5, k = 3.

If ν1 = 6 then ρ = 2, r = 10, σ = 13, e = σ+u+ ν1 = 19. The type turns
out to be [13∗19, 1; 69, 3]. If the pair has this type ,then g = 0, ω = 5, k = 3.

ii) Y = ν1(r − 1) + 3 = 2k + 3. We obtain (ρ− 1)ν1 = 2k.
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1) k = 4. Then p = 0, u = 2. Hence, (ρ− 1)ν1 = 8. Thus ν1 = 8 or 4, for
ν1 > 3 by hypothesis.

If ν1 = 8 then ρ = 2, r = 10, σ = 16, e = σ + u = 18. The type turns out
to be [16 ∗ 18; 89, 3]. If the pair has this type ,then g = 0, ω = 6, k = 4.

If ν1 = 4 then ρ = 3, r = 11, σ = 8, e = σ + u = 10. The type turns out
to be [8 ∗ 10; 410, 3]. If the pair has this type ,then g = 0, ω = 6, k = 4.

2) k = 3. Then p = 1, B = 1, u = 0, ω1 = 6. Hence, (ρ− 1)ν1 = 6. Thus
ν1 = 6 for ν1 > 3 by hypothesis. Hence,

If ν1 = 6 then ρ = 2, r = 10, σ = 12, e = σ+u+ ν1 = 18. The type turns
out to be [13 ∗ 19, 1; 69, 3]. If the pair has this type ,then g = 0, Z2 = 2, ω =
5, k = 3.

9.2 case when ν1 = 3

II) ν1 = 3. Then Z̃ = 2t2 and since ω = k + i, where i ≤ 2, it follows
that

Z̃ = ν1(i− g)− (k + i+ k̃ − 3g).

Hence, 2i = k + k̃ + 2t2 ≤ 4.

However by σ = 6 + p ≥ 7 by hypothesis, we get p > 0.
Hence, k̃ = 1, k = 3, p = 1, u = 0, B = 1. Moreover , i = 2, t2 = 0. Thus,

the type becomes [7 ∗ 10, 1; 3r] where 33− 3r ≥ 0.
Conversely, if the pair has this type , then g = 32− 3r, 2ω = (σ− 3)B̃ −

6σ = 10. Hence, ω = 5, which is equal to k + 2.

10 case when Z̃ < 3(ν1 − 3)

In the case when Z̃ < 3(ν1 − 3), we obtain

a(ν1 − 1) + 2b(ν1 − 2) < Z̃ < 3(ν1 − 3).

Here a = tν1−1, b = tν1−2 + t2.
Then we have either i) a = 1, 2 and b = 0 or ii) a = 0 and b = 1.
But these cases were discussed before.
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11 estimate of genus in terms of ω

From the fundamental equalities, we obtain

0 ≤ Z̃ = B2(ν1 − σ)σ − kν1 − k̃ + (ν1 − 1)ω − (ν1 − 3)g.

Thus
B2(σ − ν1)σ + (ν1 − 3)g + kν1 + k̃ ≤ −Z̃ + (ν1 − 1)ω. (23)

In particular,

(ν1 − 3)g + kν1 + k̃ ≤ (ν1 − 1)ω. (24)

Assuming ν1 ≥ 4, we get the following

Theorem 3

g ≤ ν1 − 1

ν1 − 3
ω. (25)

Moreover, if g = ν1−1
ν1−3ω then the type becomes [2ν1 ∗ 2ν1; νr1 ], r = 1, 2, · · · , 7

and their associates:

Hence, the following estimate is obtained.

Corollary 1 If ν1 ≥ 4 , then

g ≤ 3ω.

Moreover, if g = 3ω then ν1 = 4 and the type becomes [8 ∗ 8; 4r], r =
1, 2, · · · , 7 and their associates:

12 another estimate

For a positive integer n ≥ 4, define F̃ (n) to be (n− 1)ω − (n− 3)g and

F̃ (n)0 to be (n − 1)ω0 − (n − 3)g0, where g0 = (C+K0)·C
2 , ω0 = (C+3K0)·C

2 .
Then

F̃ (n)− F̃ (n)0 =

ν1∑
j=2

(n− j)jtj .

To verify the above, we notice

F̃ (n) =
1

2
(n− 1)(D + 3KS) ·D − 1

2
(n− 3)(D +KS) ·D = (D + nKS) ·D.
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and
F̃ (n)0 = (C + nK0) · C = (σ − n)B̃ − 2nσ.

As a matter of fact,

C2 = B̃ · C,K0 · C = ω0 − g0 = τ3/2− 9− τ1/2 + 1 = −2σ − B̃.

Furthermore,

((D + nKS)− (C + nK0)) · (D − C) =

ν1∑
j=2

(n− j)jtj .

Here, B̃ = 2e−Bσ and τm = (σ −m)(B̃ − 2m).
Then defining Z̃(n) to be

∑ν1
j=2(n− j)jtj , we obtain

F̃ (n) = F̃ (n)0 + Z̃(n). (26)

By Theorem 3, if n ≤ ν1 then n−1
n−3ω ≥ ν1−1

ν1−3ω ≥ g. Hence, F̃ (n) ≥ 0.

Thus if F̃ (n) < 0, then n > ν1 and so Z̃(n) > 0.

12.1 computation of F̃ (n)0

When B ̸= 1, we get B̃ = 2e−Bσ = (B2 + 2)σ + 2u.

F̃ (n)0 = (σ − n)B̃ − 2nσ

= (σ − n)((B2 + 2)σ + 2u)− 2nσ

= (σ − n)B2 + 2u(σ − n) + 2(σ − 2n)σ.

Thus if σ ≥ 2n then F̃ (n)0 ≥ 0.
To study the case when σ < 2n, we replace σ by 2n− j and get
F̃ (n)0 = (n− j)B2 + 2(n− j)u+ j(j − 2n).
Hence, if n > j and F̃ (n)0 < 0 then (n−j)B2+2(n−j)u+j(j−2n) < 0.

This implies that

u <
j(2n− j)− (n− j)B2

2(n− j)
.

Thus u is bounded for n.
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When B = 1, we get B̃ = σ + 2u+ 2ν1.
Replacing σ by 3n− j − 2, we obtain

F̃ (n)0 = (σ − n)(σ + 2u+ 2ν1)− 2nσ

= (2n− j − 2)(σ + 2u+ 2ν1)− 2nσ

= −(j + 2)σ + (2n− j − 2)(2u+ 2ν1)

= (2n− j − 2)(2u+ 2ν1 − j − 2)− n(j + 2).

If j = 0 then

F̃ (n)0 = (2n− 2)(2u+ 2ν1 − 2)− 2n ≥ 2(n− 2) ≥ 4,

for 2u+ 2ν1 ≥ 4 and n ≥ 4.
If j = 1 and then u+ ν1 ≥ 3 then

F̃ (n)0 = (2n− 3)(2u+ 2ν1 − 3)− 3n ≥ 3(n− 3) ≥ 3.

If j = 2 and then u+ ν1 ≥ 4 then

F̃ (n)0 = (2n− 4)(2u+ 2ν1 − 4)− 4n ≥ 4(n− 4) ≥ 0.

Moreover,supposing that 2n − j − 2 > 0, if F̃ (n)0 < 0 then from (2n −
j − 2)(2u+ 2ν1 − j − 2)− n(j + 2) < 0 we get

2u <
n(j + 2)

2n− j − 2
− 2ν1 + j + 2 ≤ n(j + 2)

2n− j − 2
+ j + 2.

However, if ν1 = 1 then B̃ = σ + 2u and u ≥ 2.
In this case, g0 = g = (σ− 1)(σ+2u− 2)/2, ω = (σ− 3)(σ+2u)/2− 3σ.
Hence, F̃ (n)0 = (σ − n)(σ + 2u)− 2nσ = σ(σ − 3n) + 2u(σ − n).

12.2 case when n = 4

Assume that n = 4. Then F̃ (4) = F̃ (4)0 + Z̃(4).

If σ = 7, then F̃ (4)0 = −35 + 6u. Assuming F̃ (4)0 < 0, we obtain
u = 2, 3, 5.

If σ = 8, then F̃ (4)0 = 8(u− 3). Assuming F̃ (4)0 < 0, we obtain u = 2.
If σ = 9, then F̃ (4)0 = −27+10u. Assuming F̃ (4)0 < 0, we obtain u = 2.
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12.3 case in which 3ω < g

Assume that σ ≥ 7.
If n = 4 and ν1 < 4 then

F̃ (4) = 3ω − g = (σ − 4)B̃ − 8σ + 4t2 + 3t3

If B = 1 then B̃ = σ + 2u+ 2ν1 and then σ = 7 or 8,9.

When σ = 7 , F̃ (4)0 = 3(7 + 2u+ 2ν1)− 56 = −35 + 6(u+ ν1).
If ν1 = 3, then F̃ (4) = −17 + 6u+ 4t2 + 3t3 < 0.
If ν1 = 2, then F̃ (4) = −23 + 6u+ 4t2 < 0.
If ν1 = 1, then F̃ (4) = −35 + 6u < 0. Hence,2 ≥ u ≥ 5. And ω =

17 + 4u, g = 14 + 6u.

When σ = 8 , F̃ (4)0 = 4(8 + 2u+ 2ν1)− 64 = −32 + 8(u+ ν1).
If ν1 = 3, then F̃ (4) = −8 + 8u+ 4t2 + 3t3 < 0.
If ν1 = 2, then F̃ (4) = −16 + 8u+ 4t2 < 0.
If ν1 = 1, then F̃ (4) = −32 + 8u < 0. Hence,2 ≥ u ≥ 3. And ω =

21 + 4u, g = 14 + 6u.

When σ = 9 , F̃ (4)0 = 5(9 + 2u+ 2ν1)− 72 = −27 + 10(u+ ν1).
If ν1 = 3, then F̃ (4) = −7 + 10u+ 4t2 + 3t3 < 0.
If ν1 = 2, then F̃ (4) = −17 + 10u+ 4t2 < 0.

When σ = 10 , F̃ (4)0 = 6(10 + 2u+ 2ν1)− 80 = −20 + 12(u+ ν1) > 0.

If n = 5 and ν1 < 5 then

F̃ (5) = 2(2ω − g) = (σ − 5)B̃ − 10σ + 6t2 + 6t3 + 4t4.

If n = 6 and ν1 < 6 then

F̃ (6) = 5ω − 3g = (σ − 6)B̃ − 12σ + 8t2 + 9t3 + 8t4 + 5t5.

If B ̸= 1 then B̃ = 2e−Bσ = B2σ+2u+2σ. Thus,for σ = 2n, it follows
that

F̃ (n)0 = (2n− n)(2B2n+ 2u+ 4n)− 4n2 ≥ 0.
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If B = 1 then B̃ = σ + 2(u+ ν1).

For σ = 3n− 2, it follows that

F̃ (n)0 = (2n− 2)(3n− 2 + 2u+ 2ν1)− 2n(3n− 2) ≥ n− 2.

Table 14: the types when F̃ (n) < 0, n = 4

n = 4

σ B ν1 F̃ (n)0 Z̃(n)

7 1 3 −17 + 6u 4t2 + 3t3
7 1 2 −23 + 6u 4t2
7 0 2,3 −14 + 6u 4t2 + 3t3
8 1 3 −26 + 8u 4t2 + 3t3
8 1 2 −28 + 8u 4t2
9 1 2 −7 + 10u 4t2
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Table 15: the types when 4 ≤ g/ω

u σ ν1 t2 t3 ω g g F (n) g/ω fraction

2 7 0 0 0 1 27 26 −23 26 26
0 7 2 1 0 2 26 25 −19 12.5 121

2
0 7 2 2 0 3 25 24 −15 8 8
3 7 0 0 0 5 33 32 −17 6.4 62

5
0 7 3 0 1 5 30 29 −14 5.8 54

5
0 7 2 3 0 4 24 23 −11 5.75 53

4
2 8 0 0 0 6 35 34 −16 5.66 52

3
0 7 3 0 2 5 27 26 −11 5.2 51

5
1 7 2 1 0 6 32 31 −13 5.166666667 51

6

0 7 3 1 1 6 29 28 −10 4.666666667 42
3

0 7 3 0 3 5 24 23 −8 4.6 43
5

0 7 2 4 0 5 23 22 −7 4.4 42
5

1 7 2 2 0 7 31 30 −9 4.285714286 42
7

4 7 0 0 0 9 39 38 −11 4.22222 42
9

0 7 3 1 2 6 26 25 −7 4.166666667 41
6

0 7 3 0 4 5 21 20 −5 4 4
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Table 16: the types when 3 < g/ω < 4

u σ ν1 t2 t3 ω g g F (n) g/ω fraction

1 7 3 0 1 9 36 35 −8 3.888888889 38
9

0 7 3 2 1 7 28 27 −6 3.857142857 36
7

2 7 2 1 0 10 38 37 −7 3.7 3 7
10

0 7 3 1 3 6 23 22 −4 3.666666667 32
3

1 7 2 3 0 8 30 29 −5 3.625 35
8

2 9 0 0 0 12 44 43 −7 3.5833 3 7
12

1 7 3 0 2 9 33 32 −5 3.555555556 35
9

0 7 2 5 0 6 22 21 −3 3.5 31
2

0 8 3 0 1 11 39 38 −5 3.454545455 3 5
11

0 7 3 2 2 7 25 24 −3 3.428571429 33
7

1 7 3 1 1 10 35 34 −4 3.4 32
5

5 7 0 0 0 13 45 44 −5 3.3846 3 5
13

2 7 2 2 0 11 37 36 −3 3.272727273 3 3
11

0 7 3 3 1 8 27 26 −2 3.25 31
4

1 7 3 0 3 9 30 29 −2 3.222222222 32
9

0 8 3 0 2 11 36 35 −2 3.181818182 3 3
11

0 7 3 1 4 6 20 19 −1 3.166666667 31
6

1 7 2 4 0 9 29 28 −1 3.111111111 31
9

1 7 3 1 2 10 32 31 −1 3.1 3 1
10

0 8 3 1 1 12 38 37 −1 3.083333333 3 1
12

3 7 2 1 0 14 44 43 −1 3.071428571 3 1
14

Table 17: the types when D are nonsingular plane curves

d ω g g g/ω fraction

9 0 28 27 ∞ ∞
10 5 36 35 7 7
11 11 45 44 4 4
12 18 49 48 2.66666 8

3
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Table 18: the types when F̃ (n) < 0

n = 5

σ B ν1 F̃ (n)0 Z̃(n)

7 1 3 −44 + 4u 6t2 + 6t3
7 1 2 −48 + 4u 6t2
7 0 2,3 −42 + 4u 6t2 + 6t3
8 1 4 −32 + 6u 6t2 + 6t3 + 4t4
8 1 3 −38 + 6u 6t2 + 6t3
8 1 2 −44 + 6u 6t2
8 0 2,3,4 −16 + 6u 6t2 + 6t3 + 4t4
9 1 4 −22 + 8u 6t2 + 6t3 + 4t4
9 1 3 −30 + 8u 6t2 + 6t3
9 1 2 −38 + 8u 6t2
9 0 4 −18 + 8u 6t2 + 6t3 + 4t4
10 1 4 −10 + 10u 6t2 + 6t3 + 4t4
10 1 3 −20 + 10u 6t2 + 6t3
10 1 2 −30 + 10u 6t2
11 1 3 −8 + 12u 6t2 + 6t3
11 1 2 −20 + 12u 6t2
12 1 2 −8 + 14u 6t2
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