Birational characterization of nonsingular plane curves

Shigeru Iitaka
Gakushuin University

February 25, 2006

Contents

1 Introduction 2
2 Some basic results 3
2.1 Minimal models 3
2.2 Formulas 5
2.3 virtual mixed plurigenera 5
2.4 Hartshorne's lemma 6
3 Bigenus and genus 8
3.1 Estimate of d 9
3.2 Converse 13
3.3 Examples 14
$4 \quad D^{2}$ and genus 16
4.1 Estimate of d 18
4.2 Converse 20
4.3 Examples 21
$5 Z^{2}$ and D^{2} 21
5.1 Estimate of d 24
5.2 Converse 26
5.3 Numerical examples 29
$6 P_{3,1}[D]$ and genus 30
6.1 Estimate of d 31
6.2 Numerical examples 36
$7 \quad P_{2,1}[D]$ and $P_{3,1}[D]$ 38
7.1 Estimate of d 39
7.2 Numerical examples 40

1 Introduction

We shall study algebraic plane curves C on the projective plane \mathbf{P}^{2} defined over the field of complex numbers. Birational maps between from \mathbf{P}^{2} into itself are called Cremona transformations. If C_{1} is a proper transform of C by a Cremona transformation, the pair $\left(\mathbf{P}^{2}, C_{1}\right)$ is said to be birationally equivalent to $\left(\mathbf{P}^{2}, C\right)$. The purpose of this paper is to give certain conditions which characterize $\left(\mathbf{P}^{2}, D\right)$ where D is a nonsingular curve, in the sense of birational equivalence.

In general, let C be a curve on a nonsingular projective surface S. Pairs (S, C) of S and C are objects of our study. Two pairs (S, C) and $\left(S_{1}, C_{1}\right)$ are said to be birationally equivalent if there exists a birational map $h: S \rightarrow S_{1}$ such that the proper transform $h[C]$ coincides with C_{1}. If D is a nonsingular curve on S, then it is easy to check that $\operatorname{dim}\left|m K_{S}+a D\right|+1, K_{S}$ being a canonical divisor on S, are birational invariants whenever $m \geq a \geq 0$. $\operatorname{dim}\left|m K_{S}+a D\right|+1$ are denoted by $P_{m, a}[D]$, which may be called mixed plurigenera of the pair (S, D). $P_{m, m}[D]$ turns out to be logarithmic plurigenera of an open surface $S-D$, denoted by $\overline{P_{m}}(S-D)$. For simplicity, $P_{m, m}[D]$ is indicated by $P_{m}[D]$, by which Kodaira dimension of the pair (S, C), written as $\kappa[C]$, is defined.

Hereafter, S is assumed to be a rational surface. Then $P_{1}[D]$ coincides with the genus of D, denoted by $g(D)$. Making use of mixed plurigenera, we obtain the characterizations of a line and a nonsingular cubic as follows:

Theorem 1 Let (S, D) be a pair of a nonsingular projective surface S and a curve on S.

If $P_{2,1}[D]=0$ and $g(D)=0$ then (S, D) is birationally equivalent to $\left(\mathbf{P}^{2}, L\right)$, L being a line.

Note that the condition $P_{2,1}[D]=0$ and $g(D)=0$ is equivalent to $P_{2}[D]=0$.
Theorem 2 If $P_{2,1}[D]=1$ and $g(D)=1$ then (S, D) is birationally equivalent to $\left(\mathbf{P}^{2}, C_{3}\right), C_{3}$ being a nonsingular cubic.

These results are mainly due to [1, p398,p404]. We shall extend his results into higher degree cases.

We begin with computing mixed plurigenera $P_{m, a}[D]$ when $(S, D)=\left(\mathbf{P}^{2}, C_{d}\right)$, C_{d} being a nonsingular curve of degree d. For $m \geq a$ and $d \geq 4$,

1. $P_{m, a}[D]=\frac{(3 m-1-a d)(3 m-2-a d)}{2}$,
2. $P_{m}[D]=\frac{((d-3) m+1)((d-3) m+2)}{2}$,
3. $P_{1}[D]=\frac{(d-2)(d-1)}{2}=g(D)$,
4. $P_{2}[D]=(d-2)(2 d-5)$,
5. $P_{2,1}[D]=\frac{(d-4)(d-5)}{2}$,
6. $P_{3,1}[D]=\frac{(d-7)(d-8)}{2}$ where $d \geq 7$.

One can ask to what extent (S, D) is determined by its mixed plurigenera. Our purpose is to establish some characterizations of pairs of \mathbf{P}^{2} and nonsingular curves using two mixed plurigenera, which will be established in main results. For examples, if $P_{2}[D]=6$ and $g=3$ then (S, D) is birationally equivalent to $\left(\mathbf{P}^{2}, C_{4}\right)$.

The similar results are obtained for $d=6$. However, in the case of $d=5$, we have a counter example:

If $P_{2}[D]=10$ and $g=6$ then (S, D) is birationally equivalent to either $\left(\mathbf{P}^{\mathbf{2}}, C_{5}\right)$ or $\left(\mathbf{P}^{\mathbf{2}}, C_{6}^{\prime}\right)$, where C_{6}^{\prime} is a plane curve of degree 6 with two singular points whose multiplicities are 2 and 3 .

2 Some basic results

2.1 Minimal models

A non-singular pair (S, D) is said to be relatively minimal, whenever the intersection number $D \cdot E \geq 2$ for any exceptional curve (of the first kind) E on S such that $E \neq D$. Moreover, the pair (S, D) is said to be minimal, if every birational map from any non-singular pair $\left(S_{1}, D_{1}\right)$ into (S, D) turns out to be regular. Any relatively minimal pair (S, D) is minimal if $\kappa[D]=2$ (see Iitaka [5]).

Relatively minimal models of rational surfaces are the projective plane \mathbf{P}^{2} or $\mathbf{P}^{1} \times \mathbf{P}^{1}$ or a \mathbf{P}^{1} - bundle over \mathbf{P}^{1}, which has a section Δ_{∞} with negative self intersection number. The last surface is denoted by a symbol Σ_{B} where $-B$ denotes the self intersection number $\Delta_{\infty}{ }^{2}$. Here, we call Σ_{B} a Hirzebruch surface of degree B after Kodaira. The Picard group of Σ_{B} is generated by a section Δ_{∞} and a fiber $F_{c}=\rho^{-1}(c)$ of the $\mathbf{P}^{1}-$ bundle, where $\rho: \Sigma_{B} \rightarrow \mathbf{P}^{1}$ is the projection.

Let C be an irreducible curve on Σ_{B}. Then there exist integers σ and e such that

$$
C \sim \sigma \Delta_{\infty}+e F_{c} .
$$

Here the symbol \sim means the linear equivalence between divisors.
We have $C \cdot F_{c}=\sigma$ and $C \cdot \Delta_{\infty}=e-B \cdot \sigma$. Hereafter, suppose that $C \neq \Delta_{\infty}$. Thus $C \cdot \Delta_{\infty} \geq 0$ and hence, $e \geq B \sigma$. If $B>0$ then $\Delta_{\infty}{ }^{2}=-B<0$ and such a section Δ_{∞} is uniquely determined. For a surface $\Sigma_{0}=\mathbf{P}^{1} \times \mathbf{P}^{1}$, we get $F_{c} \sim \mathbf{P}^{1} \times$ point and $\Delta_{\infty} \sim$ point $\times \mathbf{P}^{1}$. We may assume that $e \geq \sigma$. Thus σ and e are uniquely determined for a given curve C on Σ_{B}.

By $\nu_{1}, \nu_{2}, \cdots, \nu_{r}$ we denote the multiplicities of singular points of C where $\nu_{1} \geq \nu_{2} \geq \cdots \geq \nu_{r}$.

The symbol $\left[\sigma * e, B ; \nu_{1}, \nu_{2}, \cdots, \nu_{r}\right]$ is said to be the type of a pair $\left(\Sigma_{B}, C\right)$. If $\mathrm{B}=0$, we omit 0 in the symbol of type; namely, $\left[\sigma * e ; \nu_{1}, \nu_{2}, \cdots, \nu_{r}\right]$ stands for $\left[\sigma * e, B ; \nu_{1}, \nu_{2}, \cdots, \nu_{r}\right]$.

Assume that $\sigma \geq 2 \nu_{1}$ and $e \geq \sigma+B \nu_{1}$. Moreover, if $B=1$ then assume $e-\sigma>1$. When the above conditions are satisfied, the pair $\left(\Sigma_{B}, C\right)$ is said to be $\#$ minimal. Occasionally, the $\#$ minimal pair $\left(\Sigma_{B}, C\right)$ is said to be a \# minimal model of a pair (S, D), if it is birationally equivalent to (S, D) (See [5]). Moreover, any minimal pair (S, D) is obtained from a \# minimal model by resolving singularities of C, if it is not isomorphic to $\left(\mathbf{P}^{2}, C_{d}\right), C_{d}$ being a nonsingular curve (See [5]).

If (S, D) is minimal and $\kappa[D]=2$, then the following results are obtained(see [7]).

1. If $g \geq 1$ and $\sigma \geq 4$ then $P_{2}[D]=Z^{2}+2 \bar{g}+1$.
2. If $g \geq 0$ and $\sigma \geq 4$ then $P_{2,1}[D]=Z^{2}-\bar{g}+1$.
3. If $g \geq 0, \sigma \geq 6$ and the type is not $\left[6 * 8,1 ; 2^{r}\right]$ for $r \geq 0$, then $P_{3,1}[D]=$ $3 Z^{2}-7 \bar{g}+D^{2}+1$.
4. If $g \geq 1$ then $P_{2}[D]=P_{2,1}[D]+3 \bar{g}$.
5. If $g=0$ then $P_{2}[D]=P_{2,1}[D]=Z^{2}+2$.

Here $\bar{g}=g-1$.
The next result may be noteworthy.
Remark 1 If the pair (S, D) satisfies that $g(D)=\frac{(d-2)(d-1)}{2}, P_{2}[D]=$ $(d-2)(2 d-5), P_{3,1}[D]=\frac{(d-7)(d-8)}{2}$, then (S, D) is birationally equivalent to $\left(\mathbf{P}^{2}, C_{d}\right)$, where C_{d} is a nonsingular curve with degree d.

In order to verify this, we can assume that (S, D) is minimal.
It is easy to check $\kappa[D]=2$. Then $Z=K_{S}+D$ is nef and big. By the formulas $P_{2}[D]=Z^{2}+2 \bar{g}, P_{3,1}[D]=3 Z^{2}+D^{2}-7 \bar{g}, \bar{g}$ being $g-1$, the hypothesis implies that $D^{2}=d^{2}, Z^{2}=(d-3)^{2}$. From the formula $Z^{2}=K_{S}^{2}-D^{2}+4 \bar{g}$, it follows that $(d-3)^{2}=K_{S}^{2}-d^{2}+2 d(d-3)$. Hence, $K_{S}^{2}=9$. This yields that $S=\mathbf{P}^{2}$, which completes the proof.

This result suggests that giving values of three mixed plurigenera such as $g, P_{2}[D], P_{3,1}[D]$ is superabundant.

2.2 Formulas

Letting g_{0} be the virtual genus of C, K_{0} a canonical divisor on Σ_{B} and defining Z_{0} to be $C+K_{0}$, we get

$$
\begin{gathered}
g_{0}=(e-1)(\sigma-1)-\frac{B \sigma(\sigma-1)}{2} \\
C^{2}=2 e \sigma-\sigma^{2} B
\end{gathered}
$$

Moreover, letting $f=e-B \sigma=C \cdot \Delta_{0} \geq 0$, we obtain

$$
\begin{gathered}
C \sim \sigma \Delta_{0}+f F_{c}, \\
K_{0} \sim-2 \Delta_{0}+(B-2) F_{c}, \\
Z_{0}=C+K_{0} \sim(\sigma-2) \Delta_{0}+(f-2+B) F_{c},
\end{gathered}
$$

where Δ_{0} is an irreducible curve linearly equivalent to $\Delta_{\infty}+B F_{c}$.
Denoting $2 f+\sigma B$ by \tilde{B}, we find

$$
\begin{gathered}
g_{0}=\frac{(\sigma-1)(\tilde{B}-2)}{2}, \quad C^{2}=\sigma \tilde{B}, \\
Z_{0}^{2}=(\sigma-2)(\tilde{B}-4), \\
\left(2 Z_{0}-C\right) \cdot Z_{0}=(\sigma-3)(\tilde{B}-6)-2, \\
\left(2 Z_{0}-C\right) \cdot\left(3 Z_{0}-2 C\right)=(\sigma-5)(\tilde{B}-10)-2 .
\end{gathered}
$$

These formulas suggest that \tilde{B} is very useful. Hence, we introduce the following notion.

Two types $\left[\sigma * e, B ; \nu_{1}, \nu_{2}, \cdots, \nu_{r}\right]$ and $\left[\sigma * e^{\prime}, B^{\prime} ; \nu_{1}, \nu_{2}, \cdots, \nu_{r}\right]$ are said to be similar if $\tilde{B}=\tilde{B}^{\prime}$, where $f^{\prime}=e^{\prime}-\sigma B^{\prime}$ and $\tilde{B}^{\prime}=2 f^{\prime}+\sigma B^{\prime}$. For simplicity, we omit the similar types in the following tables of types of pairs.

2.3 virtual mixed plurigenera

If C is a curve on S, define $V P_{m, a}[C]$ to be $\operatorname{dim}\left|m K_{S}+a C\right|+1$, which we call virtual mixed plurigenus of the pair (S, C).

Let (S, D) be a pair derived from a \# minimal pair $\left(\Sigma_{B}, C\right)$ of type $[\sigma *$ $\left.e, B ; \nu_{1}, \cdots, \nu_{r}\right]$, by resolving singularities of C. Then by E_{i} denoting the exceptional divisor arising from the singular points p_{j} of C, we obtain

$$
m K_{S}+a D \sim m K_{0}+a C+\sum_{j=1}^{r}\left(m-a \nu_{i}\right) E_{i} .
$$

Suppose that $m \geq a \nu_{1}$. Then

$$
\left|m K_{S}+a D\right|=\left|m K_{0}+a C\right|+\sum_{j=1}^{r}\left(m-a \nu_{i}\right) E_{i} .
$$

Hence,

$$
V P_{m, a}[C]=P_{m, a}[D] .
$$

Therefore, we obtain the next result.
Lemma 1 Let (S, D) be a pair. If $m \geq a \nu_{1}$ then $V P_{m, a}[C]=P_{m, a}[D]$.
Equivalently, the next result follows.
If $V P_{m, a}[C]>P_{m, a}[D]$ then $m<a \nu_{1}$
Note that this result implies the famous Noether's inequality in the theory of Cremonian geometry.

2.4 Hartshorne's lemma

The next result came from the proof in [2, Hartshorne,Proposition (3.2),p118].
Lemma 2 Let (S, D) be a minimal pair derived from a $\#$ minimal pair $\left(\Sigma_{B}, C\right)$ of type $\left[\sigma * e, B ; \nu_{1}, \cdots, \nu_{r}\right]$, by resolving singularities of C. Then we have either (1) $|\sigma Z-(\sigma-2) D| \neq \emptyset$ or (2) $B=1,2 f<\sigma$ and $|e Z-(e-3) D| \neq$ \emptyset.

Proof. By E_{i} denoting the exceptional divisor arising from the singular points p_{j} of C, we obtain

$$
\begin{aligned}
\sigma Z-(\sigma-2) D & =\sigma K_{S}+2 D \\
& \sim 2\left(\sigma \Delta_{0}+f F_{c}-\sum_{j=1}^{r} \nu_{i} E_{i}\right) \\
& +\sigma\left(-2 \Delta_{0}+(B-2) F_{c}+\sum_{j=1}^{r} E_{i}\right) \\
& \sim(2 f+\sigma(B-2)) F_{c}+\sum_{j=1}^{r}\left(\sigma-2 \nu_{i}\right) E_{i}
\end{aligned}
$$

Letting ε_{1} be $2 f+\sigma(B-2)$, we have the following two cases:
(1) If $B=0$ then $\varepsilon_{1}=2 f-2 \sigma \geq 0$ and if $B \geq 2$ then $\varepsilon_{1} \geq 0$.
(2) if $B=1$ and if $\varepsilon_{1}=2 f-\sigma<0$ then $3 \sigma-2 e=\sigma-2 f=-\varepsilon_{1}>0$ and hence, $|\sigma Z-(\sigma-2) D|=\emptyset$. In this case,

$$
e-3 \nu_{i} \geq e-3 \nu_{1} \geq e-\nu_{1}-2 \nu_{1} \geq \sigma-2 \nu_{1} \geq 0
$$

Thus,

$$
\begin{aligned}
e Z-(e-3) D & =e K_{S}+3 D \\
& \sim 3\left(\sigma \Delta_{0}+f F_{c}-\sum_{j=1}^{r} \nu_{i} E_{i}\right) \\
& +e\left(-2 \Delta_{0}+(B-2) F_{c}+\sum_{j=1}^{r} E_{i}\right) \\
& \sim(3 \sigma-2 e)\left(\Delta_{0}-F_{c}\right)+\sum_{j=1}^{r}\left(e-3 \nu_{i}\right) E_{i} \\
& \sim(3 \sigma-2 e) \Delta_{\infty}+\sum_{j=1}^{r}\left(e-3 \nu_{i}\right) E_{i} .
\end{aligned}
$$

Therefore, $|e Z-(e-3) D| \neq \emptyset$, which completes the proof.
Note that $P_{\sigma, 2}[D]=V P_{\sigma, 2}[C] \operatorname{and} P_{e, 3}[D]=V P_{e, 3}[C]$.
The next result follows from Lemma 1 immediately.
Lemma 3 Let (S, D) be a minimal pair derived from a \# minimal pair $\left(\Sigma_{B}, C\right)$ of type $\left[\sigma * e, B ; \nu_{1}, \cdots, \nu_{r}\right]$.

1. Either (1) $\sigma Z^{2} \geq 2(\sigma-2) \bar{g}$ or (2) $B=1$ and $e Z^{2} \geq 2 \bar{g}(e-3)$.
2. Either (1) $2 \sigma \bar{g} \geq(\sigma-2) D^{2}$ or (2) $B=1$ and $2 \bar{g} e \geq(e-3) D^{2}$.

Here g denotes the genus of D.
Proof. The assertion 1 follows from the fact that Z is nef where $g>0$. In order to verify (1) of the assertion 2 , assume that

$$
2 \sigma \bar{g}-(\sigma-2) D^{2}=(\sigma Z-(\sigma-2) D) \cdot D<0
$$

Then since $\mid \sigma Z-(\sigma-2) D) \mid \neq \emptyset$, it follows that $D^{2}<0$ and $2 \sigma \bar{g}<(\sigma-2) D^{2} \leq 0$. Hence, $g=0$. Then noting that $\sigma \geq 4$, we have

$$
-2-\frac{4}{\sigma-2} \geq-4 \text { and }-4 \geq D^{2}
$$

and thus

$$
-2-\frac{4}{\sigma-2} \geq D^{2}
$$

It follows that $2 \sigma \bar{g}=-2 \sigma \geq(\sigma-2) D^{2}$.
By the similar argument, we are done in the assertion 2.

3 Bigenus and genus

Suppose that (S, D) is a minimal pair which satisfies (1) $P_{2}[D]=(2 d-5)(d-2)$, for some $d \geq 4$ and (2) $\delta=g-\frac{(d-1)(d-2)}{2} \geq 0, g$ being the genus of D.

Assume that (S, D) is not birationally equivalent to $\left(\mathbf{P}^{2}, C_{d}\right), C_{d}$ being a nonsingular curve. Then (S, D) is obtained from a \# minimal model $\left(\Sigma_{B}, C\right)$ with type $\left[\sigma * e, B ; \nu_{1}, \cdots, \nu_{r}\right]$ by shortest resolution of singularities of C. From the formula $P_{2}[D]=Z^{2}+2 g-1, Z$ being $K_{S}+D([7])$, it follows that

$$
(2 d-5)(d-2)=Z^{2}+2 g-1=Z^{2}+d^{2}-3 d+2+2 \delta-1 .
$$

Hence,

$$
\begin{equation*}
Z^{2}=(d-3)^{2}-2 \delta . \tag{1}
\end{equation*}
$$

Denoting by t_{j} the numbers of singular points of C with multiplicities j, define X to be $\sum_{j=2}^{\nu_{1}} \frac{j(j-1)}{2} t_{j}$. Then by genus formula,

$$
\begin{equation*}
(\sigma-1)(\tilde{B}-2)=2 g+2 X=d^{2}-3 d+2+2 \delta+2 X \tag{2}
\end{equation*}
$$

Moreover, defining U to be $\sum_{j=2}^{\nu_{1}}(j-1)^{2} t_{j}$, we get

$$
\begin{equation*}
Z^{2}+U=(\sigma-2)(\tilde{B}-4) \tag{3}
\end{equation*}
$$

Multiplying (3) by $\sigma-1$, we have

$$
\begin{aligned}
(\sigma-1) Z^{2}+(\sigma-1) U & =(\sigma-2)((\sigma-1)(\tilde{B}-2)-2(\sigma-1)) \\
& =(\sigma-2)(2 g+2 X-2(\sigma-1)) \\
& =(\sigma-2)\left(d^{2}-3 d+2+2 \delta\right)+2(\sigma-2) X-2(\sigma-1)(\sigma-2)
\end{aligned}
$$

On the other hand,

$$
(\sigma-1) Z^{2}+(\sigma-1) U=(\sigma-1)\left((d-3)^{2}-2 \delta\right)+(\sigma-1) U
$$

From these, it follows that

$$
\begin{gathered}
(\sigma-1)\left((d-3)^{2}-2 \delta\right)-(\sigma-2)\left(d^{2}-3 d+2\right) \\
=2 \delta(\sigma-2)+2(\sigma-2) X-(\sigma-1) U-2(\sigma-1)(\sigma-2) .
\end{gathered}
$$

Defining Θ_{2} to be $2(\sigma-2) X-(\sigma-1) U$, we have

$$
\Theta_{2}=\sum_{j=2}^{\nu_{1}}\left\{(\sigma-2) j(j-1)-(\sigma-1)(j-1)^{2}\right\} t_{j}
$$

$$
=\sum_{j=2}^{\nu_{1}}\{(j-1)(\sigma-j-1)\} t_{j},
$$

and

$$
\begin{aligned}
(\sigma-1)(d-3)^{2} & -(\sigma-2)\left(d^{2}-3 d+2\right)+2(\sigma-1)(\sigma-2) \\
& =d^{2}-3 \sigma d+2 \sigma^{2}+\sigma-1 \\
& =(d-\sigma-1)(d-2 \sigma+1) .
\end{aligned}
$$

Finally, we find the following formula:

$$
\begin{equation*}
(d-\sigma-1)(d+1-2 \sigma)=2(2 \sigma-3) \delta+\Theta_{2} \tag{4}
\end{equation*}
$$

where

$$
\Theta_{2}=\sum_{j=2}^{\nu_{1}}(j-1)(\sigma-j-1) t_{j}=(\sigma-3) t_{2}+2(\sigma-4) t_{3}+3(\sigma-5) t_{4}+\cdots
$$

By $(d-\sigma-1)(d+1-2 \sigma) \geq 0$, we have either $d \geq 2 \sigma-1$ or $d \leq \sigma+1$.

3.1 Estimate of d

We shall show that $d \geq 2 \sigma-1$. First, by Lemma 2, we obtain either (1) $\sigma Z^{2} \geq 2(\sigma-2) \bar{g}$ or $(2) B=1$ and $e Z^{2} \geq 2(e-3) \bar{g}$.

In the first case,

$$
\sigma Z^{2}=\sigma\left((d-3)^{2}-2 \delta\right) \geq 2(\sigma-2) \bar{g}=(\sigma-2)(d(d-3)+2 \delta) .
$$

Thus,

$$
(d-3)(2 d-3 \sigma) \geq 4(\sigma-1) \delta \geq 0
$$

Therefore,

$$
\sigma \leq \frac{2 d}{3}
$$

If $\sigma \geq d-1$ then

$$
d-1 \leq \sigma \leq \frac{2 d}{3}
$$

Hence, $d \leq 3$, which concordat the hypothesis $d \geq 4$, i.e., $d \geq 2 \sigma-1$.
In the second case,

$$
e Z^{2}=e\left((d-3)^{2}-2 \delta\right) \geq 2 \bar{g}(e-3)=(e-2)(d(d-3)+2 \delta)
$$

and so

$$
(d-3)(2 d-3 e) \geq 4 \delta(e-1) \geq 0
$$

Hence,

$$
2 d \geq 3 e=3(f+\sigma) \geq 3 \nu_{1}+3 \sigma ;
$$

thus

$$
3 \sigma \leq 2 d
$$

If $\sigma \geq d-1$ then $2 d>3 \sigma \geq 3 d-3$, which implies that $d \leq 1$. This contradicts the hypothesis. Hence, $\sigma \geq d-1$ cannot occur. Thus, we conclude that $d \geq 2 \sigma-1$.

If $d=2 \sigma-1$, then $r=0$. By $Z^{2}=(\sigma-2)(\tilde{B}-4)$ and $Z^{2}=(d-3)^{2}$, we obtain

$$
\tilde{B}=2(d-1), \tilde{B}=\frac{d+1}{2} B+2 f .
$$

When one puts $B=0$, we have $f=e=d-1$ and the type is $\left[\frac{d+1}{2} *(d-1) ; 1\right]$. In general, the type becomes $\left[\frac{d+1}{2} *(d-1) ; 1\right]$ and its similar types.

Define k to be $d-2 \sigma+1 \geq 0$. Then $d=2 \sigma+k-1$. Replacing d by $2 \sigma+k-1$, the formula (4) becomes

$$
k(\sigma+k-2)=2(2 \sigma-3) \delta+\Theta_{2} .
$$

If $r>0$ then $k(\sigma+k-2) \geq(k+1)(\sigma-k-3)$ and thus,

$$
\sigma \leq 2 k^{2}+2 k+3
$$

Therefore, given k, we have σ such that $3 \leq \sigma \leq 2 k^{2}+2 k+3$ and the equality

$$
k(\sigma+k-2)=2(2 \sigma-3) \delta+(\sigma-3) t_{2}+2(\sigma-4) t_{3}+3(\sigma-5) t_{4}+\cdots .
$$

holds. This equation has a finite number of non-negative solutions $\sigma, \delta, t_{2}, t_{3}, \cdots$. For example, in the cases of $k=1,2,3$, we have the following solutions listed in the next tables using computer.

Table 1: types with $k=1$

d	$[\sigma * e, B ;$ multiplicities $]$	ν_{1}	δ
8	$\left[4 * 9 ; 2^{3}\right]$	2	0
10	$\left[5 * 13,1 ; 2^{2}\right]$	2	0
14	$[7 * 18,1 ; 3]$	3	0

Table 2: types with $k=2$

d	$[\sigma * e, B ;$ multiplicities $]$	ν_{1}	δ
9	$\left[4 * 13 ; 2^{8}\right]$	2	0
11	$\left[5 * 16,1 ; 2^{5}\right]$	2	0
13	$\left[6 * 15 ; 2^{4}\right]$	2	0
13	$\left[6 * 16 ; 3^{3}\right]$	3	0
15	$\left[7 * 17 ; 3,2^{2}\right]$	3	0
17	$\left[8 * 19 ; 3^{2}\right]$	3	0
19	$\left[9 * 25,1 ; 2^{3}\right]$	2	0
19	$[9 * 21 ; 4,2]$	4	0
23	$[11 * 30,1 ; 3,2]$	3	0
25	$[12 * 27 ; 5]$	5	0
31	$[15 * 40,1 ; 4]$	4	0

Table 3: types with $k=3$

d	$[\sigma * e, B ;$ multiplicities $]$	ν_{1}	δ
10	$\left[4 * 18 ; 2^{15}\right]$	2	0
10	$\left[4 * 15 ; 2^{5}\right]$	2	1
12	$\left[5 * 17 ; 2^{9}\right]$	2	0
12	$\left[5 * 18,1 ; 2^{2}\right]$	2	1
14	$\left[6 * 18 ; 2^{7}\right]$	2	0
14	$\left[6 * 19 ; 3^{3}, 2^{3}\right]$	3	0
14	$[6 * 17 ; 2]$	2	1
16	$\left[7 * 23,1 ; 2^{6}\right]$	2	0
16	$\left[7 * 20 ; 3^{2}, 2^{3}\right]$	3	0
16	$\left[7 * 24,1 ; 3^{4}\right]$	3	0
18	$\left[8 * 22 ; 4,3,2^{2}\right]$	4	0
18	$\left[8 * 23 ; 4^{3}\right]$	4	0
20	$\left[9 * 23 ; 2^{5}\right]$	2	0
20	$\left[9 * 28,1 ; 3^{3}\right]$	3	0
20	$\left[9 * 28,1 ; 4,2^{3}\right]$	4	0
20	$\left[9 * 24 ; 4^{2}, 2\right]$	4	0
20	$[9 * 27,1 ; 1]$	1	1

Observing these tables, we obtain the following result.
Proposition 1 If $P_{2}[D]=(d-2)(2 d-5)$ and $\delta=g-\frac{(d-1)(d-2)}{2} \geq 0$, then $d \geq 4 \nu_{1}+3$ except for the following cases:

1. $d=8,\left[4 * 9 ; 2^{3}\right], d=4 \nu_{1}$,
2. $d=10,\left[5 * 13,1 ; 2^{2}\right], d=4 \nu_{1}+2$,
3. $d=9,\left[4 * 13 ; 2^{8}\right], d=4 \nu_{1}+1$,
4. $d=13,\left[6 * 16 ; 3^{3}\right], d=4 \nu_{1}+1$,
5. $d=10,\left[4 * 18 ; 2^{15}\right], d=4 \nu_{1}+2$,
6. $d=10,\left[4 * 15 ; 2^{5}\right], d=4 \nu_{1}+2$,
7. $d=14,\left[6 * 19 ; 3^{3}, 2^{3}\right], d=4 \nu_{1}+2$,
8. $d=18,\left[8 * 22 ; 4,3,2^{2}\right], d=4 \nu_{1}+2$,
9. $d=18,\left[8 * 23 ; 4^{3}\right], d=4 \nu_{1}+2$.

3.2 Converse

We shall show the converse.
Proposition 2 Suppose that nonnegative integers $d \geq 4, \sigma, \delta, t_{j}(j=2,3, \cdots)$ satisfy that

$$
(d-\sigma-1)(d+1-2 \sigma)=2(2 \sigma-3) \delta+\Theta_{2}
$$

where

$$
\Theta_{2}=\sum_{j=2}^{\nu_{1}}(j-1)(\sigma-j-1) t_{j} .
$$

Moreover, assume that there exists a minimal pair (S, D) obtained from a \# minimal model $\left(\Sigma_{B}, C\right)$ with type $\left[\sigma * e, B ; \nu_{1}, \nu_{1}, \cdots, \nu_{r}\right]$ which corresponds to integers $d, \sigma, \Delta, t_{j}(j=2,3, \cdots)$. Then $P_{2}[D]=(2 d-5)(d-2)$.

Proof. Letting $X=\sum_{j=2}^{\nu_{1}} \frac{j(j-1)}{2} t_{j}$ and $U=\sum_{j=2}^{\nu_{1}}(j-1)^{2} t_{j}$, we have $\Theta_{2}=$ $2(\sigma-2) X-(\sigma-1) U$. Considering both sides of the formula $(4) \bmod (\sigma-1)$, we obtain

$$
\begin{aligned}
(d-\sigma-1)(d+1-2 \sigma) & \equiv(d-1)(d-2) & & \bmod (\sigma-1), \\
2(2 \sigma-3) \delta+\Theta_{2} & \equiv-2 \delta+\Theta_{2} & & \bmod (\sigma-1), \\
\Theta_{2}=2(\sigma-2) X-(\sigma-1) U & \equiv-2 X & & \bmod (\sigma-1) .
\end{aligned}
$$

Hence, from the formula (4), it follows that

$$
(d-1)(d-2)+2 \delta+2 X \equiv 0 \bmod (\sigma-1),
$$

which implies that $\frac{d^{2}-3 d+2+2 \delta+2 X}{\sigma-1}$ is an integer. Then define \tilde{B}_{0} to be $2+\frac{d^{2}-3 d+2+2 \delta+2 X}{\sigma-1}$.

Now assume that there exists a minimal pair (S, D) obtained from a \# minimal model $\left(\Sigma_{B}, C\right)$ by shortest resolution of singularities, whose type is $\left[\sigma * e, B ; \nu_{1}, \cdots, \nu_{r}\right]$, where $\tilde{B}=\tilde{B}_{0}$ and the sequence of multiplicities ν_{2}, ν_{3}, \cdots corresponds to the sequence of t_{2}, t_{3}, \cdots. Indeed, when \tilde{B}_{0} is even, one can put $B=0, e=f=\frac{\tilde{B}_{0}}{2}$. Further, when \tilde{B}_{0} is odd, σ is verified to be odd and so one can put $B=1, e=\frac{\tilde{B}_{0}+\sigma}{2}$.

By genus formula,

$$
(\sigma-1)(\tilde{B}-2)=2 g+2 X
$$

where g is the genus of D. However, by the definition of \tilde{B}, we find

$$
(\sigma-1)(\tilde{B}-2)=d^{2}-3 d+2+2 \delta+2 X
$$

So, the genus g coincides with $d^{2}-3 d+2+2 \delta$.
Next, we shall prove that $Z^{2}=(d-3)^{2}-2 \delta$.
In the previous section, we assumed $Z^{2}=(d-3)^{2}-2 \delta$. But here, the equation is not assumed. Define an invariant ε to be $Z^{2}-\left((d-3)^{2}-2 \delta\right)$. Thus $Z^{2}=\varepsilon+(d-3)^{2}-2 \delta$ and then

$$
(\sigma-2)(\tilde{B}-4)=Z^{2}+U=\varepsilon+(d-3)^{2}-2 \delta+U .
$$

By multiplying this by $\sigma-1$, we have

$$
\begin{aligned}
& (\sigma-1)\left(\varepsilon+(d-3)^{2}\right)+(\sigma-1) U \\
& =(\sigma-2)((\sigma-1)(\tilde{B}-2)-2(\sigma-1)) \\
& =(\sigma-2)\left(d^{2}-3 d+2+2 \delta\right)+2(\sigma-2) X-2(\sigma-1)(\sigma-2)
\end{aligned}
$$

From this, it follows that

$$
\begin{aligned}
& (\sigma-1)\left(\varepsilon+(d-3)^{2}-2 \delta\right)-(\sigma-2)\left(d^{2}-3 d+2\right) \\
& =(\sigma-1) \varepsilon+2 \delta(\sigma-2)+2(\sigma-2) X-(\sigma-1) U-2(\sigma-1)(\sigma-2)
\end{aligned}
$$

Thus we obtain

$$
\begin{equation*}
(\sigma-1) \varepsilon+(d-\sigma-1)(d+1-2 \sigma)=2(2 \sigma-3) \delta+\Theta_{2} \tag{5}
\end{equation*}
$$

Recall that we assumed the equality (4). Then the formula (5) induces ($\sigma-$ $1) \varepsilon=0$. Hence, $\varepsilon=0$. Thus $Z^{2}=(d-3)^{2}-2 \delta$ is derived and we establish $P_{2}[D]=(2 d-5)(d-2)$.

3.3 Examples

If $\sigma=3$ then $\nu_{1}=1$ and the formula (4) becomes $(d-4)(d-5)=6 \delta$. Hence,

$$
d \equiv 1,2,4,5 \bmod 6
$$

Let $[3 * e, B ; 1]$ be the type. Then $Z^{2}=\tilde{B}-4=(d-3)^{2}-2 \delta$. From this it follows that

$$
\tilde{B}=(d-3)^{2}+4-\frac{(d-4)(d-5)}{3}=\frac{2 d^{2}-9 d+19}{3} .
$$

More precisely, when $d \equiv 1,5 \bmod 6$, it is easy to check that $\frac{2 d^{2}-9 d+19}{3}$ is even. Hence,one can put $B=0, f=\frac{2 d^{2}-9 d+19}{6}$.

When $d \equiv 2,4 \bmod 6$, it is easy to check that $\frac{2 d^{2}-9 d+19}{3}$ is odd. Hence,one can put $B=1,2 f+3=\tilde{B}$. Thus $f=\frac{2 d^{2}-9 d+10}{6}$.

Suppose that $\delta=0$. Then $d=4,5$.
If $d=4$ then $B=1, f=1, e=4$. Then the type is $[3 * 4,1 ; 1]$. But this contradicts the condition of $\#-$ minimality.

If $d=5$ then $B=0, e=f=4$. Then the type is $[3 * 4 ; 1], \delta=0$.
If $d=7$ then $B=0, e=9$. Then the type is $[3 * 9 ; 1], \delta=1$.
If $d=8$ then $B=1, e=14$. Then the type is $[3 * 14,1 ; 1], \delta=2$.
If $d=10$ then $B=1, e=23$. Then the type is $[3 * 23,1 ; 1], \delta=5$.
If $d=11$ then $B=0, e=27$. Then the type is $[3 * 27 ; 1], \delta=7$.
If $\sigma \geq 4$ then suppose that $r=0$ and $\delta=0$.
Using computer one has the following tables of types where $5 \leq d \leq 12$.

Table 4: types of pairs where $P_{2}[D]=(d-2)(2 d-5)$ with $5 \leq d \leq 12$ and $\delta \geq 0$

d	$[\sigma * e, B ;$ multiplicities $]$	ν_{1}	δ
5	$[3 * 4 ; 1]$	1	0
7	$[3 * 9 ; 1]$	1	1
7	$[4 * 6 ; 1]$	1	0
8	$[3 * 14,1 ; 1]$	1	2
8	$\left[4 * 9 ; 2^{3}\right]$	2	0
9	$\left[4 * 13 ; 2^{8}\right]$	2	0
9	$[5 * 8 ; 1]$	1	0
10	$[3 * 23,1 ; 1]$	2	5
10	$\left[4 * 18 ; 2^{15}\right]$	2	0
10	$\left[4 * 15 ; 2^{5}\right]$	2	1
10	$\left[5 * 13,1 ; 2^{2}\right]$	2	0
11	$[3 * 27 ; 1]$	1	7
11	$\left[4 * 24 ; 2^{24}\right]$	2	0
11	$\left[4 * 21 ; 2^{14}\right]$	2	1
11	$\left[4 * 18 ; 2^{4}\right]$	2	2
11	$\left[5 * 16,1 ; 2^{5}\right]$	2	0
11	$[6 * 10 ; 1]$	1	0
12	$\left[4 * 31 ; 2^{35}\right]$	2	0
12	$\left[4 * 28 ; 2^{25}\right]$	2	1
12	$\left[4 * 25 ; 2^{15}\right]$	2	2
12	$\left[4 * 22 ; 2^{5}\right]$	2	3
12	$\left[5 * 17 ; 2^{9}\right]$	2	0
12	$\left[5 * 18,1 ; 2^{2}\right]$	2	1

Theorem 3 If $4 \leq d \leq 9, P_{2}[D]=(d-2)(2 d-5)$ and $g=\frac{d^{2}-3 d+2}{2}$ then the pair (S, D) becomes a pair of $\mathbf{P}^{\mathbf{2}}$ and a nonsingular plane curve or the type is $\left[\frac{d+1}{2} *(d-1) ; 1\right]$ or $\left[4 * 9 ; 2^{3}\right]$ or $\left[4 * 13 ; 2^{8}\right]$.

Table 5: types of pairs where $P_{2}[D]=(d-2)(2 d-5)$ with $13 \leq d \leq 15$ and $\delta=0$

d	$[\sigma * e, B ;$ multiplicities $]$	ν_{1}	δ
13	$\left[4 * 39 ; 2^{48}\right]$	2	0
13	$\left[5 * 21 ; 2^{14}\right]$	2	0
13	$\left[6 * 15 ; 2^{4}\right]$	2	0
13	$\left[6 * 16 ; 3^{3}\right]$	3	0
13	$[7 * 12 ; 1]$	1	0
14	$\left[4 * 48 ; 2^{63}\right]$	2	0
14	$\left[5 * 28,1 ; 2^{20}\right]$	2	0
14	$\left[6 * 18 ; 2^{7}\right]$	2	0
14	$\left[6 * 19 ; 3^{3}, 2^{3}\right]$	3	0
14	$[7 * 18,1 ; 3]$	3	0
15	$\left[4 * 58 ; 2^{80}\right]$	2	0
15	$\left[5 * 33,1 ; 2^{27}\right]$	2	0
15	$\left[6 * 22 ; 3^{2}, 2^{8}\right]$	3	0
15	$\left[6 * 23 ; 3^{5}, 2^{4}\right]$	3	0
15	$\left[6 * 24 ; 3^{8}\right]$	3	0
15	$\left[7 * 17 ; 3,2^{2}\right]$	3	0
15	$[8 * 14 ; 1]$	1	0

$4 \quad D^{2}$ and genus

Next, suppose that $D^{2}=d^{2}$ and $g \leq \frac{(d-1)(d-2)}{2}$. So in this case $\delta_{(-)}$is defined to be $\frac{(d-1)(d-2)}{2}-g \geq 0$. Thus $2 g=d^{2}-3 d+2-2 \delta_{(-)}$.

Assume that (S, D) is not birationally equivalent to $\left(\mathbf{P}^{2}, C_{d}\right), C_{d}$ being a nonsingular curve. Thus (S, D) is obtained from a $\#$ minimal model $\left(\Sigma_{B}, C\right)$ of type $\left[\sigma * e, B ; \nu_{1}, \nu_{1}, \cdots, \nu_{r}\right]$ by shortest resolution of singularities of C. Then

$$
\begin{aligned}
Z^{2} & =K_{S}^{2}-D^{2}+4 \bar{g} \\
& =8-r-d^{2}+2 d(d-3)-4 \delta_{(-)} \\
& =(d-3)^{2}-1-r-4 \delta_{(-)}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
Z^{2}=(d-3)^{2}-1-r-4 \delta_{(-)} \tag{6}
\end{equation*}
$$

The genus formula implies

$$
\begin{equation*}
(\sigma-1)(\tilde{B}-2)=2 g+2 X \tag{7}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\sigma \tilde{B}=D^{2}+W, \tag{8}
\end{equation*}
$$

where

$$
W=\sum_{j=2}^{\nu_{1}} j^{2} t_{j} .
$$

Multiplying (7) by σ, we obtain

$$
(\sigma-1)(\sigma \tilde{B}-2 \sigma)=2 \sigma g+2 \sigma X
$$

and by (8),

$$
\begin{aligned}
& (\sigma-1)(\sigma \tilde{B}-2 \sigma) \\
& =(\sigma-1)\left(D^{2}+W\right)-2 \sigma(\sigma-1) \\
& =2 \sigma g+2 \sigma X \\
& =\left(d^{2}-3 d+2\right) \sigma-2 \delta_{(-)} \sigma+2 \sigma X
\end{aligned}
$$

So,

$$
\begin{gathered}
(\sigma-1) D^{2}+(\sigma-1) W-2 \sigma X-2 \sigma(\sigma-1) \\
=\left(d^{2}-3 d+2\right) \sigma-2 \delta_{(-)} \sigma
\end{gathered}
$$

Thus, defining Θ_{D} to be $(\sigma-1) W-2 \sigma X$, we have

$$
\begin{aligned}
\Theta_{D} & =\sum_{j=2}^{\nu_{1}}\left\{(\sigma-1) j^{2}-(\sigma-1) j(j-1)\right\} t_{j} \\
& =\sum_{j=2}^{\nu_{1}} j(\sigma-j) t_{j}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& -(\sigma-1) d^{2}+\left(d^{2}-3 d+2\right) \sigma+2(\sigma-1)(\sigma-2) \\
& =d^{2}-3 \sigma d+2 \sigma^{2} \\
& =(d-\sigma)(d-2 \sigma)
\end{aligned}
$$

Thus we find the following formula:

$$
\begin{equation*}
(d-\sigma)(d-2 \sigma)=2 \sigma \delta_{(-)}+\Theta_{D} \tag{9}
\end{equation*}
$$

In particular, $(d-\sigma)(d-2 \sigma) \geq 0$ implies

$$
\begin{equation*}
d \leq \sigma \text { or } d \geq 2 \sigma \tag{10}
\end{equation*}
$$

4.1 Estimate of d

We shall show that $d \geq 2 \sigma$. Actually, by Lemma 2, we obtain either (1) $2 \sigma \bar{g} \geq$ $(\sigma-2) D^{2}$ or (2) $B=1$ and $e Z^{2} \geq 2 \bar{g}(e-3)$.

In the first case,

$$
2 \sigma \bar{g}=\sigma\left(d^{2}-3 d-2 \delta_{(-)}\right) \geq(\sigma-2) D^{2}=(\sigma-2) d^{2}
$$

Hence, $\bar{g} \geq 0$ and $d(2 d-3 \sigma) \geq 2 \sigma \bar{g} \geq 0$. Thus,

$$
\sigma \leq \frac{2 d}{3}<d
$$

We can check $d \geq \sigma$ in the second case, too. Hence by (10), $d \geq 2 \sigma$.
If $r=0$ and $\delta_{(-)}=0$, then $d=2 \sigma$. Since $D^{2}=d^{2}$, it follows that $\tilde{B}=2 d$. Hence, the type becomes $\left[\frac{d}{2} * e, B ; 1\right]$ such that $e=d+\frac{d B}{4}$. These types are similar to the type $\left[\frac{d}{2} * 2 d ; 1\right]$. Thus, if d is even, the types are $\left[\frac{d}{2} * 2 d ; 1\right]$ and their similar ones.

Define k to be $d-2 \sigma$. Then $d=2 \sigma+k$. We suppose that $k>0$. Substituting $d=2 \sigma+k$, the formula (9) becomes

$$
k(\sigma+k)=2 \sigma \delta_{(-)}+\Theta_{D}
$$

If $r>0$ then $k(\sigma+k) \geq(k+1)(\sigma-k-1)$. Thus,

$$
\sigma \leq 2 k^{2}+2 k+1
$$

For $k=1,2,3$, we have the following tables.

Table 6: types in the case of $D^{2}=d^{2}$ with $k=1$

d	$[\sigma * e, B ;$ multiplicities $]$	ν_{1}	$\delta_{(-)}$
11	$[5 * 15,1 ; 2]$	2	0

Table 7: types in the case of $D^{2}=d^{2}$ with $k=2$

d	$[\sigma * e, B ;$ multiplicities $]$	ν_{1}	$\delta_{(-)}$
10	$\left[4 * 14 ; 2^{3}\right]$	2	0
10	$[4 * 13 ; 2]$	2	1
14	$\left[6 * 17 ; 2^{2}\right]$	2	0
22	$[10 * 25 ; 4]$	4	0
28	$[13 * 37,1 ; 3]$	3	0

Table 8: types in the case of $D^{2}=d^{2}$ with $k=3$

d	$[\sigma * e, B ;$ multiplicities $]$	ν_{1}	$\delta_{(-)}$
13	$\left[5 * 21,1 ; 2^{4}\right]$	2	0
15	$\left[6 * 21 ; 3^{3}\right]$	3	0
17	$\left[7 * 25,1 ; 2^{3}\right]$	2	0
21	$\left[9 * 30,1 ; 3^{2}\right]$	3	0
21	$[9 * 25 ; 3]$	3	1
21	$[9 * 29,1 ; 1]$	1	2
25	$[11 * 29 ; 3,2]$	3	0
29	$[13 * 39,1 ; 2]$	2	1
33	$[15 * 45,1 ; 6]$	6	0
37	$\left[17 * 49,1 ; 2^{2}\right]$	2	0
37	$[17 * 41 ; 5]$	5	0
53	$[25 * 69,1 ; 4]$	4	0

4.2 Converse

We shall show the converse.
Proposition 3 Suppose that nonnegative integers $d \geq 4, \sigma, \delta, t_{j}(j=2,3, \cdots)$ satisfy that

$$
(d-\sigma)(d-2 \sigma)=2 \sigma \delta_{(-)}+\Theta_{D}
$$

where

$$
\Theta_{D}=\sum_{j=2}^{\nu_{1}} j(\sigma-j) t_{j}
$$

Assume that there exists a minimal pair (S, D) obtained from a \# minimal model $\left(\Sigma_{B}, C\right)$ with type $\left[\sigma * e, B ; \nu_{1}, \nu_{1}, \cdots, \nu_{r}\right]$ which corresponds to integers $d, \sigma, \Delta, t_{j}(j=2,3, \cdots)$. Then $D^{2}=d^{2}$.

To verify this, letting $X=\sum_{j=2}^{\nu_{1}} \frac{j(j-1)}{2} t_{j}$ and $W=\sum_{j=2}^{\nu_{1}} j^{2} t_{j}$, we obtain $\Theta_{D}=(\sigma-1) W-2 X \sigma$ and then

$$
(d-\sigma)(d-2 \sigma) \equiv d^{2}-3 d+2 \bmod (\sigma-1)
$$

Furthermore,

$$
2 \sigma \delta_{(-)}+\Theta_{D} \equiv 2 \delta_{(-)}-2 X \sigma \bmod (\sigma-1)
$$

By hypothesis,

$$
\begin{aligned}
0 & =d^{2}-3 d+2-\left(2 \sigma \delta_{(-)}+\Theta_{D}\right) \\
& \equiv d^{2}-3 d+2-\left(2 \delta_{(-)}-2 X \sigma\right) \bmod (\sigma-1)
\end{aligned}
$$

Consequently, $\frac{d^{2}-3 d+2-2 \delta_{(-)}+2 X}{\sigma-1}$ is an integer. Then define

$$
\tilde{B}_{0}=2+\frac{d^{2}-3 d+2-2 \delta_{(-)}+2 X}{\sigma-1}
$$

By hypothesis, there exists a minimal pair (S, D) obtained from a \# minimal model $\left(\Sigma_{B}, C\right)$ with type $\left[\sigma * e, B ; \nu_{1}, \nu_{1}, \cdots, \nu_{r}\right]$ such that $\tilde{B}=\tilde{B}_{0}$ and the sequence of multiplicities ν_{2}, ν_{3}, \cdots corresponds to the sequence of t_{2}, t_{3}, \cdots.

By the condition, the genus g coincides with $d^{2}-3 d+2-2 \delta_{(-)}$.
Next, we shall prove that $D^{2}=d^{2}$. Replacing $D^{2}=d^{2}$ by $D^{2}=\varepsilon+d^{2}$, by the same argument as before, we obtain

$$
\begin{equation*}
(d-\sigma)(d-2 \sigma)=2 \sigma \delta_{(-)}+\Theta_{D}+(\sigma-1) \varepsilon \tag{11}
\end{equation*}
$$

Since the equality

$$
(d-\sigma)(d-2 \sigma)=2 \sigma \delta_{(-)}+\Theta_{D}
$$

was assumed, it follows that $\varepsilon=0$. Hence, $D^{2}=d^{2}$.

4.3 Examples

If $\sigma=3$ then $\nu_{1}=1$ and the formula becomes $(d-3)(d-6)=6 \delta_{(-)}$. Hence,

$$
d \equiv 0 \bmod 3
$$

By $[3 * e, B ; 1]$ we denote the type. Then $D^{2}=3 \tilde{B}$ and therefore, $\tilde{B}=\frac{d^{2}}{3}$.
When $d=3 \mu$, we have $\tilde{B}=3 \mu^{2}$ and $\delta=\frac{3(\mu-1)(\mu-2)}{2}$. Hence, if d is even, then put $B=0$ and thus $f=\frac{3 \mu^{2}}{2}$. The type is $\left[3 * \frac{3 \mu^{2}}{2} ; 1\right]$ (or its similar ones).

If d is odd, then put $B=1$ and thus $f=\frac{3 \mu^{2}-3}{2}$. The type is $\left[3 * \frac{3 \mu^{2}+3}{2}, 1 ; 1\right]$.
Suppose that $\delta_{(-)}=0$. Then $d=6$ and so by putting $B=0$, we get $e=6$ and the type becomes $[3 * 6 ; 1]$.

In general, if $d=9$, then $B=1, e=15, \delta_{(-)}=3$ and so the type is $[3 * 15,1 ; 1]$.

If $d=12$, then $B=0, e=24, \delta_{(-)}=9$ and so the type is $[3 * 24 ; 1]$.
Suppose that $r=0$ and $\delta_{(-)}=0$. Then by the formula, $d=2 \sigma$. In particular, d is even. Hence, $\sigma=\frac{d}{2}$. By $D^{2}=\sigma \tilde{B}=d^{2}$, we obtain

$$
\tilde{B}=2 d, \quad \tilde{B}=\frac{d}{2} B+2 f
$$

When $B=0$, we have $f=e=d$ and the type is $\left[\frac{d}{2} * d ; 1\right]$. In general, the type becomes $\left[\frac{d}{2} * d ; 1\right]$ and its similar ones.

Using computer, one has the following tables of types where $5 \leq d \leq 12$.
Observing these formulas, we obtain the next proposition.
Theorem 4 Suppose that $D^{2}=d^{2}$ and $g=\frac{(d-1)(d-2)}{2}$.
Then whenever $d=4,5,7,9$, the pair is birationally equivalent to $\left(\mathbf{P}^{2}, C_{d}\right)$, C_{d} being a nonsingular curve.

$5 \quad Z^{2}$ and D^{2}

Suppose that $Z^{2}=(d-3)^{2}$ and $D^{2} \geq d^{2}$ for some $d \geq 4$. Then Δ is defined to be $D^{2}-d^{2}$, which is nonnegative. $g-\frac{(d-1)(d-2)}{2}$ is denoted by δ, which will be proved to be positive.

Assume that (S, D) is not birationally equivalent to $\left(\mathbf{P}^{2}, C_{d}\right), C_{d}$ being a nonsingular curve. Thus (S, D) is obtained from a $\#$ minimal model $\left(\Sigma_{B}, C\right)$ of type $\left[\sigma * e, B ; \nu_{1}, \nu_{1}, \cdots, \nu_{r}\right]$ by shortest resolution of singularities of C. Then from

$$
Z^{2}=K_{S}^{2}-D^{2}+4 \bar{g}
$$

it follows that

$$
(d-3)^{2}=Z^{2}=8-r-\left(d^{2}+\Delta\right)+2 d(d-3)+4 \delta
$$

Table 9: types in the case of $D^{2}=d^{2}$ with $4 \leq d \leq 13$

d	$[\sigma * e, B ;$ multiplicities $]$	ν_{1}	$\delta_{(-)}$
6	$[3 * 6 ; 1]$	1	0
8	$[4 * 8 ; 1]$	1	0
9	$[3 * 15,1 ; 1]$	1	3
10	$\left[4 * 14 ; 2^{3}\right]$	2	0
10	$[4 * 21 ; 2]$	2	1
10	$[5 * 10 ; 1]$	1	0
11	$[5 * 15,1 ; 2]$	2	0
12	$[3 * 24 ; 1]$	1	9
12	$\left[4 * 22 ; 2^{8}\right]$	2	0
12	$\left[4 * 22 ; 2^{8}\right]$	2	0
12	$\left[4 * 29 ; 2^{6}\right]$	2	1
12	$\left[4 * 36 ; 2^{4}\right]$	2	2
12	$\left[4 * 43 ; 2^{2}\right]$	2	3
12	$[4 * 50 ; 1]$	1	4
12	$[6 * 12 ; 1]$	1	0

Hence,

$$
\begin{equation*}
4 \delta=1+r+\Delta \tag{12}
\end{equation*}
$$

Multiplying (3) by σ, we obtain

$$
\begin{aligned}
\sigma Z^{2}+\sigma U & =(\sigma-2)(\sigma \tilde{B}-4 \sigma) \\
& =(\sigma-2)\left(D^{2}+W\right)-4(\sigma-2) \sigma \\
& =(\sigma-2) d^{2}+(\sigma-2) \Delta+(\sigma-2) W-4(\sigma-2) \sigma .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\sigma Z^{2}+\sigma U & =\sigma(d-3)^{2}+\sigma U \\
& =(\sigma-2) d^{2}+(\sigma-2) \Delta+(\sigma-2) W-4(\sigma-2) \sigma
\end{aligned}
$$

and so

$$
\sigma(d-3)^{2}-(\sigma-2) d^{2}+4(\sigma-2) \sigma=(\sigma-2) \Delta+(\sigma-2) W-\sigma U .
$$

Defining

$$
\Theta_{D Z}=(\sigma-2) W-\sigma U
$$

we have

Table 10: types in the case of $D^{2}=d^{2}$ with $13 \leq d \leq 18$ where $r>0, \delta_{(-)}=0$

d	$[\sigma * e, B ;$ Type $]$	ν_{1}	$\delta_{(-)}$
13	$\left[5 * 21,1 ; 2^{4}\right]$	2	0
14	$\left[4 * 32 ; 2^{15}\right]$	2	0
14	$\left[5 * 22 ; 2^{6}\right]$	2	0
14	$\left[6 * 17 ; 2^{2}\right]$	2	0
15	$\left[6 * 21 ; 3^{3}\right]$	3	0
16	$\left[4 * 44 ; 2^{24}\right]$	2	0
16	$\left[5 * 30 ; 2^{11}\right]$	2	0
16	$\left[6 * 23 ; 2^{5}\right]$	2	0
17	$\left[5 * 37,1 ; 2^{14}\right]$	2	0
17	$\left[7 * 25,1 ; 2^{3}\right]$	2	0
18	$\left[4 * 58 ; 2^{35}\right]$	2	0
18	$\left[6 * 30 ; 2^{9}\right]$	2	0
18	$\left[6 * 33 ; 3^{8}\right]$	3	0
18	$\left[7 * 25 ; 3^{2}, 2^{2}\right]$	3	0
19	$\left[5 * 47,1 ; 2^{21}\right]$	2	0
19	$\left[6 * 35 ; 3^{3}, 2^{8}\right]$	3	0
19	$\left[7 * 31,1 ; 2^{6}\right]$	2	0
19	$\left[7 * 29 ; 3^{5}\right]$	3	0
20	$\left[4 * 74 ; 2^{48}\right]$	2	0
20	$\left[5 * 50 ; 2^{25}\right]$	2	0
20	$\left[6 * 38 ; 2^{14}\right]$	2	0
20	$\left[6 * 41 ; 3^{8}, 2^{5}\right]$	3	0
20	$\left[7 * 32 ; 3^{4}, 2^{3}\right]$	3	0
20	$\left[8 * 26 ; 2^{4}\right]$	2	0
20	$\left[8 * 28 ; 4^{3}\right]$	4	0
21	$\left[6 * 45 ; 3^{7}, 2^{9}\right]$	3	0
21	$\left[6 * 48 ; 3^{15}\right]$	3	0
21	$\left[7 * 39,1 ; 3^{4}, 2^{5}\right]$	3	0
21	$\left[9 * 30,1 ; 3^{2}\right]$	3	0

$$
\Theta_{D Z}=\sum_{j=2}^{\nu_{1}}\left(-2 j^{2}+2 \sigma j-\sigma\right) t_{j} \geq \sum_{j=2}^{\nu_{1}} 2 j(j-1) t_{j}
$$

Thus, noting that

$$
\sigma(d-3)^{2}-(\sigma-2) d^{2}+4(\sigma-2) \sigma=2 d^{2}-6 \sigma d+(4 \sigma+1) \sigma,
$$

we find the next formula:

$$
\begin{equation*}
2 d^{2}-6 \sigma d+(4 \sigma+1) \sigma=(\sigma-2) \Delta+\Theta_{D Z} \tag{13}
\end{equation*}
$$

where $\Theta_{D Z}=\sum_{j=2}^{\nu_{1}}\left(-2 j^{2}+2 \sigma j-\sigma\right) t_{j}$.
Claim: If $\Theta_{D Z}=0$ then $\Delta \geq 3$.
Actually, $\Theta_{D Z}=0$ implies $r=0$. But, from $4 \delta=1+r+\Delta=1+\Delta$, it follows that $\Delta \geq 3$.

By the Claim, $(\sigma-2) \Delta+\Theta_{D Z}>0$ and so

$$
2 d^{2}-6 \sigma d+(4 \sigma+1) \sigma \geq 1
$$

Moreover,

$$
2 d^{2}-6 \sigma d+(4 \sigma+1) \sigma-\frac{1}{2}=\frac{(2 d-4 \sigma+1)(2 d-2 \sigma-1)}{2} \geq \frac{1}{2}
$$

Hence,

$$
\begin{equation*}
(2 d-4 \sigma+1)(2 d-2 \sigma-1)>0 . \tag{14}
\end{equation*}
$$

Therefore, we have either $2 d \leq 2 \sigma+1$ or $2 d \geq 4 \sigma-1$ and so we obtain either 1) $\sigma \geq d$ or 2) $d \geq 2 \sigma$.

5.1 Estimate of d

We shall show that $d \geq 2 \sigma$.
Actually, by Lemma 2, we have either (1) $\sigma Z^{2} \geq 2(\sigma-2) \bar{g}$ or (2) $B=1$ and $e Z^{2} \geq 2(e-3) \bar{g}$.

In the first case ,
$\sigma(d-3)^{2}=\sigma Z^{2} \geq 2(\sigma-2) \bar{g}=(\sigma-2)(d(d-3)+2 \delta) \geq(\sigma-2) d(d-3)$.
Therefore, $2 d \geq 3 \sigma$, and so $\sigma \leq \frac{2 d}{3}$; hence by (14), we obtain $d \geq 2 \sigma$.

In the second case, it follows that

$$
e(d-3)^{2}=e Z^{2} \geq 2(e-3) \bar{g}=(e-3) d(d-3) .
$$

Hence, $e(d-3) \geq(e-3) d$, which implies that $d \geq e=f+\sigma>\sigma$. Therefore,

$$
\sigma \leq d-1
$$

Hence, by (14), we obtain

$$
2 d-4 \sigma+1>0 ; \quad d \geq 2 \sigma
$$

Suppose that $d=2 \sigma$. Then the formula (12) turns out to be

$$
2 d^{2}-6 \sigma d+(4 \sigma+1) \sigma=\sigma=(\sigma-2) \Delta+\Theta_{D Z}
$$

Since

$$
\sigma=(\sigma-2) \Delta+\Theta_{D Z} \geq \Theta_{D Z} \geq\left(2 \nu_{1}-1\right) \sigma-2 \nu_{1}^{2}
$$

it follows that

$$
\nu_{1}^{2} \geq 2\left(\nu_{1}-1\right) \nu_{1}
$$

Hence, $2 \geq \nu_{1}$.
Assume that $\nu_{1}=2$. Then $\sigma=4, d=8 ; \Theta_{D Z}=4, t_{2}=1, \Delta=0$. Hence,

$$
D^{2}=\sigma \tilde{B}-4=d^{2}=64
$$

Thus, $\tilde{B}=17$ and $17=\tilde{B}=2 f+4 B$, which is a contradiction.
Assume that $\nu_{1}=1$. Then $r=0,4 \delta=1+\Delta \geq 4$ and

$$
\sigma=(\sigma-2) \Delta \geq 3(\sigma-2)
$$

Hence, $\sigma=3, d=6, e=8, \Delta=3$, which imply that the type is $[3 * 8,1 ; 1]$.
Define k to be $d-2 \sigma$. Replacing d by $2 \sigma+k$, the formula (13) turns out to be

$$
\begin{equation*}
2 k^{2}+(2 k+1) \sigma=(\sigma-2) \Delta+\Theta_{D Z} \tag{15}
\end{equation*}
$$

Since

$$
2 k^{2}+(2 k+1) \sigma \geq\left(-2 j^{2}+2 \sigma j-\sigma\right), j=k+2
$$

it follows that $\sigma \leq 2\left(k^{2}+2 k+2\right)$. Thus, we obtain the following tables using computer.

By observing these tables, we obtain the following result.
Proposition 4 If $D^{2}=d^{2}$ and $Z^{2}=(d-3)^{2}$ and (S, D) is not birationally equivalent to pairs of the projective plane and non-singular curves, then

$$
d \geq 4 \nu_{1}+3
$$

except for the type $\left[6 * 25,1 ; 3^{5}\right]$.

Table 11: types in the case of $D^{2}=d^{2}$ and $Z^{2}=(d-3)^{2}$ with $k=1,2,3$

d	$[\sigma * e, B ;$ multiplicities $]$	ν_{1}	Δ
21	$[10 * 27,1 ; 3]$	3	0
10	$\left[4 * 16 ; 2^{7}\right]$	2	0
16	$\left[7 * 23,1 ; 3,2^{2}\right]$	3	0
18	$\left[8 * 21 ; 2^{3}\right]$	2	0
42	$[20 * 54,1 ; 4]$	4	0
15	$\left[6 * 25,1 ; 3^{5}\right]$	3	0
21	$\left[9 * 26 ; 3^{3}\right]$	3	0
21	$\left[9 * 31,1 ; 4^{2}, 2\right]$	4	0
25	$\left[11 * 35,1 ; 4,2^{2}\right]$	4	0
29	$\left[13 * 33 ; 3,2^{2}\right]$	3	0
39	$[18 * 53,1 ; 9]$	9	0
45	$\left[21 * 59,1 ; 2^{3}\right]$	2	0
71	$[34 * 91,1 ; 5]$	5	0

5.2 Converse

By the same argument as in the previous section, we can show the converse.
Proposition 5 Suppose that nonnegative integers $d, \sigma, \Delta, t_{j}(j=2,3, \cdots)$ satisfy that

$$
\begin{equation*}
2 d^{2}-6 \sigma d+(4 \sigma+1) \sigma=(\sigma-2) \Delta+\Theta_{D Z} \tag{16}
\end{equation*}
$$

and that $\Delta+1+r$ is even.
Assume that there exists a minimal pair (S, D) obtained from a \# minimal model $\left(\Sigma_{B}, C\right)$ with type $\left[\sigma * e, B ; \nu_{1}, \nu_{1}, \cdots, \nu_{r}\right]$ which corresponds to integers $d, \sigma, \Delta, t_{j}(j=2,3, \cdots)$. Then $Z^{2}=(d-3)^{2}$.

Proof. By (14),

$$
2 d^{2}-6 \sigma d+(4 \sigma+1) \sigma \equiv 2 d^{2}+\sigma \bmod 2 \sigma
$$

Hence,

$$
2 d^{2}+\sigma \equiv(\sigma-2) \Delta+(\sigma-2) W-\sigma U \bmod 2 \sigma
$$

Thus

$$
2\left(d^{2}+\Delta+W\right) \equiv \sigma(\Delta+W-U-1) \bmod 2 \sigma
$$

By the way,

$$
W-U=\sum_{j=2}^{\nu_{1}}\left\{j^{2}-(j-1)^{2}\right\} t_{j}
$$

and

$$
W-U-r=\sum_{j=2}^{\nu_{1}}\left\{j^{2}-(j-1)^{2}-1\right\} t_{j} \equiv 0 \bmod 2 .
$$

Therefore,

$$
\begin{aligned}
\sigma(\Delta+W-U-1) & =\sigma(\Delta+W-U-r)+\sigma(r-1) \\
& \equiv \sigma(\Delta+r-1) \bmod 2 \sigma
\end{aligned}
$$

However, since $\Delta+1+r$ is even, it follows that

$$
\sigma(\Delta+r-1) \equiv 0 \bmod 2 \sigma .
$$

So,

$$
\begin{equation*}
\sigma(\Delta+W-U-1) \equiv 0 \bmod 2 \sigma . \tag{17}
\end{equation*}
$$

Therefore,

$$
2\left(d^{2}+\Delta+W\right) \equiv 0 \bmod 2 \sigma,
$$

which implies that $\frac{d^{2}+\Delta+W}{\sigma}$ is an integer, which we denote by \tilde{B}_{0}. Thus,

$$
\begin{equation*}
\sigma \tilde{B}_{0}=d^{2}+\Delta+W \tag{18}
\end{equation*}
$$

As in the previous sections, assume that there exists a minimal pair (S, D) obtained from a \# minimal model $\left(\Sigma_{B}, C\right)$ with type $\left[\sigma * e, B ; \nu_{1}, \nu_{1}, \cdots, \nu_{r}\right]$ of which \tilde{B} equals \tilde{B}_{0} and the sequence of multiplicities ν_{2}, ν_{3}, \cdots corresponds to the sequence of t_{2}, t_{3}, \cdots. Then

$$
\sigma \tilde{B}=D^{2}+W, \sigma \tilde{B}=\sigma \tilde{B}_{0}=d^{2}+\Delta+W .
$$

Defining ε to be $Z^{2}-(d-3)^{2}$, we have

$$
(\sigma-2)(\tilde{B}-4)=(d-3)^{2}+\varepsilon+U .
$$

Multiplying the above formula by σ, we obtain

$$
(\sigma-2)(\sigma \tilde{B}-4 \sigma)=\sigma(d-3)^{2}+\sigma \varepsilon+\sigma U
$$

and

$$
\begin{aligned}
(\sigma-2)(\sigma \tilde{B}-4 \sigma) & =(\sigma-2)\left(D^{2}+W\right)-4 \sigma(\sigma-2) \\
& =(\sigma-2)\left(d^{2}+\Delta+W\right)-4 \sigma(\sigma-2)
\end{aligned}
$$

Therefore,

$$
(\sigma-2)\left(d^{2}+\Delta+W\right)-4 \sigma(\sigma-2)=\sigma\left((d-3)^{2}+\varepsilon\right)+\sigma U
$$

Hence,

$$
\sigma \varepsilon=2 d^{2}-6 \sigma d+(4 \sigma+1) \sigma-(\sigma-2) \Delta-\Theta_{D Z}
$$

However, the formula (16) implies that the right hand side vanishes. Hence,

$$
\sigma \varepsilon=0 ; \quad \varepsilon=0
$$

Therefore, $Z^{2}=(d-3)^{2}$ has been established.

5.3 Numerical examples

Table 12: types in the case of $D^{2}=d^{2}$ and $Z^{2}=(d-3)^{2}$ with $4 \leq d \leq 21$

d	$[\sigma * e, B ;$ multiplicities $]$	Δ	ν_{1}
10	$\left[4 * 16 ; 2^{7}\right]$	0	2
14	$\left[4 * 40 ; 2^{31}\right]$	0	2
14	$\left[5 * 24 ; 2^{11}\right]$	0	2
15	$\left[5 * 31,1 ; 2^{15}\right]$	0	2
16	$\left[7 * 23,1 ; 3,2^{2}\right]$	0	3
17	$\left[6 * 29 ; 3^{3}, 2^{8}\right]$	0	3
18	$\left[4 * 76 ; 2^{71}\right]$	0	2
18	$\left[6 * 32 ; 2^{15}\right]$	0	2
18	$\left[7 * 29,1 ; 3,2^{6}\right]$	0	3
18	$\left[8 * 21 ; 2^{3}\right]$	0	2
20	$\left[6 * 41 ; 2^{23}\right]$	0	2
20	$\left[7 * 37,1 ; 3^{5}, 2^{6}\right]$	0	3
21	$\left[5 * 67,1 ; 2^{51}\right]$	0	2
21	$\left[6 * 47 ; 3^{3}, 2^{24}\right]$	0	3
21	$\left[6 * 54 ; 3^{23}\right]$	0	3
21	$\left[7 * 40,1 ; 3^{2}, 2^{13}\right]$	0	3
21	$\left[8 * 31 ; 4,3^{3}, 2^{3}\right]$	0	4
21	$\left[9 * 26 ; 3^{3}\right]$	0	3
21	$\left[9 * 31,1 ; 4^{2}, 2\right]$	0	4

Observing these tables, we get the next result.
Theorem 5 (H.Yanaba) Suppose that $Z^{2}=(d-3)^{2}$ and $D^{2}=d^{2}$.
If $d=4,5,7,8,9,11,12,13,19$, then (S, D) is birationally equivalent to a pair of \mathbf{P}^{2} and a nonsingular curve.

$6 \quad P_{3,1}[D]$ and genus

Suppose that $P_{3,1}[D]=\frac{(d-7)(d-8)}{2}$ for $d \geq 7$, and $\delta=g-\frac{(d-1)(d-2)}{2} \geq 0, g$ being the genus of D. Then assume that a minimal pair (S, D) is not birationally equivalent to $\left(\mathbf{P}^{2}, C_{d}\right), C_{d}$ being a nonsingular curve. Then (S, D) is obtained from a \# minimal model $\left(\Sigma_{B}, C\right)$ of type $\left[\sigma * e, B ; \nu_{1}, \nu_{1}, \cdots, \nu_{r}\right]$ by shortest resolution of singularities of C. By the same argument as before,

$$
\begin{equation*}
(\sigma-1)(\tilde{B}-2)=2 g+2 X \tag{19}
\end{equation*}
$$

Moreover, assuming $\sigma \geq 6$, we have $2 P_{3,1}[D]-2=(3 Z-2 D)(2 Z-D)$. Thus

$$
\begin{equation*}
(\sigma-5)(\tilde{B}-10)-2=(3 Z-2 D)(2 Z-D)+2 Y \tag{20}
\end{equation*}
$$

Here, $Y=\sum_{j=2}^{\nu_{1}} \frac{(j-2)(j-3)}{2} t_{j}$. Then

$$
\begin{equation*}
(\sigma-5)(\tilde{B}-10)=(d-7)(d-8)+2 Y \tag{21}
\end{equation*}
$$

Multiplying (21) by $\sigma-1$, we obtain

$$
\begin{aligned}
& (\sigma-5)(\sigma-1)(\tilde{B}-2)-8(\sigma-1)(\sigma-5) \\
& =(\sigma-1)(d-7)(d-8)+2(\sigma-1) Y
\end{aligned}
$$

From hypothesis, it follows that

$$
(\sigma-5)(\sigma-1)(\tilde{B}-2)=(\sigma-5)\left(d^{2}-3 d+2\right)+2 \delta(\sigma-5)+2 X(\sigma-5)
$$

Hence, defining Θ_{31} to be $(\sigma-5) X-(\sigma-1) Y$, we have

$$
\begin{aligned}
\Theta_{31} & =\sum_{j=2}^{\nu_{1}}\left\{\sigma(2 j-3)-2 j^{2}+3\right\} t_{j} \geq(\sigma-5) t_{2} \\
& +\sum_{j=3}^{\nu_{1}}\{2 j(j-3)+3\} t_{j}
\end{aligned}
$$

Note that $\Theta_{31}=0$ implies $r=0$.
Moreover,

$$
\begin{aligned}
& (\sigma-1)(d-7)(d-8)-(\sigma-5)\left(d^{2}-3 d+2\right)+8(\sigma-1)(\sigma-5) \\
& =2 d^{2}-6 \sigma d+4 \sigma^{2}+3 \sigma-3
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
2 d^{2}-6 \sigma d+4 \sigma^{2}+3 \sigma-3=\delta(\sigma-5)+\Theta_{31} \tag{22}
\end{equation*}
$$

So,

$$
2 d^{2}-6 \sigma d+4 \sigma^{2}+3 \sigma-3 \geq 0
$$

However,

$$
\begin{aligned}
& 2 d^{2}-6 \sigma d+4 \sigma^{2}+3 \sigma-3 \\
& =2 d^{2}-6 \sigma d+4 \sigma^{2}+3 \sigma-\frac{9}{2}-\frac{1}{2} \\
& =\frac{(2 d-4 \sigma+3)(2 d-2 \sigma-3)}{2}-\frac{1}{2} \geq 0
\end{aligned}
$$

Hence, $(2 d-4 \sigma+3)(2 d-2 \sigma-3)>0$.
Therefore, we have either $\sigma>\frac{2 d-3}{2}$ or $\sigma<\frac{2 d+3}{4}$. From $\sigma>\frac{2 d-3}{2}$, it follows that $d \leq \sigma+1$. Similarly, $\sigma<\frac{2 d+3}{4}$ implies $d \geq 2 \sigma-1$.

6.1 Estimate of d

We shall verify that if $d \leq \sigma+1$ then $d=\sigma+1$ and the type is either 1) $\left[6 * 8,1 ; 2^{r}\right], r \leq 5, d=7$ or 2) $\left[7 * 9,1 ; 2^{r}\right], r \leq 6, d=8$. Otherwise, $d \geq 2 \sigma$.

Actually, assuming $d \leq \sigma+1$, by Lemma 1 we have either (1) $\mid \sigma Z-(\sigma-$ 2) $D \mid \neq \emptyset$ or $(2) B=1,2 f<\sigma$ and $|e Z-(e-3) D| \neq \emptyset$.

In the first case, since $\sigma \geq 4$, it follows that $2 Z-D$ is nef. Hence,

$$
(\sigma Z-(\sigma-2) D) \cdot(2 Z-D) \geq 0
$$

and

$$
\begin{equation*}
2 \sigma Z^{2}+(\sigma-2) D^{2}+2(4-3 \sigma) \bar{g} \geq 0 \tag{23}
\end{equation*}
$$

By hypothesis,

$$
\begin{equation*}
6 Z^{2}+2 D^{2}-14 \bar{g}=(d-7)(d-8) \tag{24}
\end{equation*}
$$

Eliminating D^{2} from these two formulas, we obtain

$$
(6-\sigma) Z^{2}+\frac{(\sigma-2)(d-7)(d-8)}{2} \geq(6-\sigma) \bar{g}
$$

Hence,

$$
\frac{(\sigma-2)(d-7)(d-8)}{2} \geq(\sigma-6)\left(Z^{2}-\bar{g}\right)
$$

But by Lemma 2,

$$
\sigma Z^{2} \geq 2(\sigma-2) \bar{g}
$$

and so

$$
Z^{2} \geq 2\left(1-\frac{2}{\sigma}\right) \bar{g}
$$

Therefore,

$$
(\sigma-6)\left(Z^{2}-\bar{g}\right) \geq(\sigma-6)\left(1-\frac{4}{\sigma}\right) \bar{g} .
$$

Hence,

$$
\begin{equation*}
\sigma(\sigma-2)(d-7)(d-8) \geq(\sigma-4)(\sigma-6) d(d-3) \tag{25}
\end{equation*}
$$

Defining a quadratic equation $F(x)$ by

$$
\sigma(\sigma-2)(x-7)(x-8)-(\sigma-4)(\sigma-6) x(x-3)
$$

we shall verify that if $F(d) \geq 0$ then $d \geq \sigma+1$.
This follows from observing Figure 1 which is the figure of curves defined by $x(x-2)(y-7)(y-8)=(x-4)(x-6) y(y-3), x=6, y=6, y=x+1$.

If $d=\sigma+1$ then the formula (23) induces

$$
(d-1)(d-3)(d-7)(d-8) \geq(d-5)(d-7) d(d-3),
$$

which implies either $d=7$ or

$$
(d-1)(d-8) \geq d(d-5)
$$

Then $-9 d+8 \geq-5 d ; 2 \geq d$. But this is impossible.
If $d=7$ then $\sigma=6$ and by (21) we have $\tilde{B}=10$. Hence, the type becomes $\left[6 * 8,1 ; 2^{r}\right]$.

In the second case, since $|e Z-(e-3) D| \neq \emptyset$ and $2 Z-D$ is nef for $\sigma \geq 4$, it follows that

$$
(e Z-(e-3) D) \cdot(2 Z-D) \geq 0
$$

Therefore,

$$
\begin{equation*}
2 e Z^{2}+(e-3) D^{2}+2(6-3 e) \bar{g} \geq 0 . \tag{26}
\end{equation*}
$$

Recalling (24), we obtain

$$
(9-e) Z^{2}+\frac{(d-7)(d-8)(e-3)}{2} \geq(9-e) \bar{g}
$$

Hence,

$$
\begin{equation*}
\frac{(d-7)(d-8)(e-3)}{2} \geq(e-9)\left(Z^{2}-\bar{g}\right) . \tag{27}
\end{equation*}
$$

Figure 1: $x(x-2)(y-7)(y-8)=(x-4)(x-6) y(y-3), x=6, y=6, y=x+1$

But by Lemma2,

$$
Z^{2}-\bar{g} \geq \frac{e-6}{e} \bar{g} \geq \frac{(e-6) d(d-3)}{2 e}
$$

Combining this with (26), we obtain

$$
\begin{equation*}
e(e-3)(d-7)(d-8) \geq(e-6)(e-9) d(d-3) . \tag{28}
\end{equation*}
$$

Noting that $d \geq 8$ and $e \geq 9$, we have the next figure of curves.

Figure 2: $x(x-3)(y-7)(y-8)=(x-6)(x-9) y(y-3), x=9, y=8, y=x-1$

Observing Figure 2 , we get $d \geq e-1$. Since $e \geq \sigma+\nu_{1}$, we get $d \geq e-1=f+\sigma-1 \geq f+\sigma-1 \geq \sigma+\nu_{1}-1$.

Suppose that $d=\sigma+1$. Then $d=e-1$ and by (27), we obtain

$$
e(e-3)(e-8)(e-9) \geq(e-6)(e-9)(e-1)(e-4) .
$$

Hence, either $e=9$ or

$$
e(e-3)(e-8) \geq(e-6)(e-1)(e-4)
$$

This induces $24 \geq 10 e$; hence, $2 \geq e$, which is a contradiction. Thus $e=9$ and so $d=8, \sigma=7$ and the type is $\left[7 * 9,1 ; 2^{r}\right]$, where $r \leq 6, d=7$.

Given d and σ, one can enumerate $\delta, t_{2}, t_{3}, \cdots$ satisfying the following formula:

$$
(\sigma-5) \delta+\Theta_{31}=(\sigma-5)\left(\delta+t_{2}+3 t_{3}\right)+(5 \sigma-29) t_{4}+\cdots
$$

Since $\delta+t_{2}+3 t_{3}$ is invariant, if d and σ are given, then in the following table $t_{3}=0, \delta=0$ is assumed. For example, if the type $\left[8 * 17 ; 2^{7}\right]$ is given, other types such as $\left[8 * 17 ; 3^{t_{3}}, 2^{t_{2}}\right]$ with $7=\delta+t_{2}+3 t_{3}$ exist.

6.2 Numerical examples

Table 13: types where $2 P_{3,1}[D]=(d-7)(d-8), 2 g=(d-1)(d-2)$ with $7 \leq d \leq 19$ and $t_{3}=0, \delta=0$

d	$[\sigma * e, B ;$ multiplicities $]$	ν_{1}	δ
7	$\left[6 * 8 ; 2^{5}\right]$	2	0
8	$\left[7 * 9 ; 2^{6}\right]$	2	0
11	$\left[6 * 11 ; 2^{5}\right]$	2	0
12	$\left[6 * 15 ; 2^{15}\right]$	2	0
13	$\left[6 * 20 ; 2^{29}\right]$	2	0
13	$\left[7 * 16,1 ; 2^{3}\right]$	2	0
14	$\left[6 * 26 ; 2^{47}\right]$	2	0
14	$\left[7 * 19,1 ; 2^{9}\right]$	2	0
15	$\left[6 * 33 ; 2^{69}\right]$	2	0
15	$\left[7 * 19 ; 2^{17}\right]$	2	0
16	$\left[6 * 41 ; 2^{95}\right]$	2	0
16	$\left[7 * 23 ; 2^{27}\right]$	2	0
16	$\left[8 * 17 ; 2^{7}\right]$	2	0
17	$\left[6 * 50 ; 2^{125}\right]$	2	0
17	$\left[7 * 31,1 ; 2^{29}\right]$	2	0
17	$\left[8 * 20 ; 2^{13}\right]$	2	0
17	$\left[8 * 21 ; 4^{3}, 2^{2}\right]$	4	0
18	$\left[6 * 60 ; 2^{159}\right]$	2	0
18	$\left[7 * 36,1 ; 2^{23}\right]$	2	0
18	$\left[8 * 24 ; 4^{2}, 2^{13}\right]$	4	0
18	$\left[8 * 25 ; 4^{5}, 2^{2}\right]$	4	0
18	$\left[9 * 19 ; 4,2^{2}\right]$	4	0
19	$\left[6 * 71 ; 2^{197}\right]$	2	0
19	$\left[7 * 38 ; 2^{69}\right]$	2	0
19	$\left[8 * 27 ; 2^{29}\right]$	2	0
19	$\left[8 * 28 ; 4^{3}, 2^{18}\right]$	4	0
19	$\left[8 * 29 ; 4^{6}, 2^{7}\right]$	4	0
19	$\left[9 * 26,1 ; 2^{11}\right]$	2	0
19	$\left[9 * 22 ; 4^{2}, 2^{3}\right]$	4	0

Table 14: types where $2 P_{3,1}[D]=(d-7)(d-8), 2 g=(d-1)(d-2)$ with $20 \leq d \leq 21$, and $t_{3}=0, \delta=0$

d	$[\sigma * e, B ;$ multiplicities $]$	ν_{1}	δ
20	$\left[6 * 83 ; 2^{239}\right]$	2	0
20	$\left[7 * 44 ; 2^{87}\right]$	2	0
20	$\left[8 * 31 ; 2^{39}\right]$	2	0
20	$\left[8 * 32 ; 4^{3}, 2^{28}\right]$	4	0
20	$\left[8 * 33 ; 4^{6}, 2^{17}\right]$	4	0
20	$\left[8 * 34 ; 4^{9}, 2^{6}\right]$	4	0
20	$\left[9 * 29,1 ; 2^{17}\right]$	2	0
20	$\left[9 * 25 ; 4^{2}, 2^{9}\right]$	4	0
20	$\left[9 * 30,1 ; 4^{4}, 2\right]$	4	0
21	$\left[6 * 96 ; 2^{285}\right]$	2	0
21	$\left[7 * 54,1 ; 2^{107}\right]$	2	0
21	$\left[8 * 36 ; 4^{2}, 2^{43}\right]$	4	0
21	$\left[8 * 37 ; 4^{5}, 2^{32}\right]$	4	0
21	$\left[8 * 38 ; 4^{8}, 2^{21}\right]$	4	0
21	$\left[8 * 39 ; 4^{11}, 2^{10}\right]$	4	0
21	$\left[9 * 28 ; 4,2^{20}\right]$	4	0
21	$\left[9 * 33,1 ; 4^{3}, 2^{12}\right]$	4	0
21	$\left[9 * 29 ; 4^{5}, 2^{4}\right]$	4	0
21	$[10 * 24 ; 5,4,2]$	5	0

$7 \quad P_{2,1}[D]$ and $P_{3,1}[D]$

Suppose that a minimal pair (S, D) satisfies that $P_{2,1}[D] \geq \frac{(d-4)(d-5)}{2}$ and $P_{3,1}[D]=\frac{(d-7)(d-8)}{2}$ for $d>6$ that is not birationally equivalent to $\left(\mathbf{P}^{2}, C_{d}\right), C_{d}$ being a nonsingular curve. Then (S, D) is obtained from a $\#$ minimal model $\left(\Sigma_{B}, C\right)$ of type $\left[\sigma * e, B ; \nu_{1}, \nu_{1}, \cdots, \nu_{r}\right]$ by shortest resolution of singularities of C. Then defining Δ_{21} to be $P_{2,1}[D]-\frac{(d-4)(d-5)}{2} \geq 0$,

$$
\begin{equation*}
(\sigma-3)(\tilde{B}-6)=(d-4)(d-5)+2 \Delta_{21}+2 V \tag{29}
\end{equation*}
$$

Here, $V=\sum_{j=2}^{\nu_{1}} \frac{(j-2)(j-1)}{2} t_{j}$. Moreover,

$$
\begin{equation*}
(\sigma-5)(\tilde{B}-10)=(d-7)(d-8)+2 Y \tag{30}
\end{equation*}
$$

Here, $Y=\sum_{j=2}^{\nu_{1}} \frac{(j-2)(j-3)}{2} t_{j}$.
Then multiplying (27) by $\sigma-3$, we obtain

$$
\begin{equation*}
(\sigma-3)(\sigma-5)(\tilde{B}-10)=(\sigma-3)(d-7)(d-8)+2(\sigma-3) Y \tag{31}
\end{equation*}
$$

By (26),

$$
\begin{aligned}
& (\sigma-3)(\sigma-5)(\tilde{B}-10) \\
& =(\sigma-3)(\sigma-5)(\tilde{B}-6)-4(\sigma-3)(\sigma-5) \\
& =(\sigma-5)\left((d-4)(d-5)+2 \Delta_{21}+2 V\right)+(\sigma-5) \Delta_{21}-4(\sigma-3)(\sigma-5) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& (\sigma-3)(d-7)(d-8)+2(\sigma-5) Y \\
& =(\sigma-5)((d-4)(d-5)+2 V)+(\sigma-5) \Delta_{21}-4(\sigma-3)(\sigma-5) .
\end{aligned}
$$

Therefore, defining Θ_{32} to be $(\sigma-3) V-(\sigma-5) Y$, we obtain

$$
\begin{equation*}
(d-\sigma-2)(d+2-2 \sigma)=(\sigma-5) \Delta_{21}+\Theta_{32} . \tag{32}
\end{equation*}
$$

Here, $\Theta_{32}=\sum_{j=3}^{\nu_{1}}(j-2)(\sigma-j-2) t_{j}=(\sigma-5) t_{3}+2(\sigma-6) t_{4}+\cdots$.
Since $\Theta_{32} \geq 0$, it follows that

$$
(d-\sigma-2)(d+2-2 \sigma) \geq 0
$$

Thus either $d \leq \sigma+2$ or $d \geq 2 \sigma-2$.
Note that if $(\sigma-5) \Delta_{21}+\Theta_{32}=0$ and $\sigma \geq 6$ then $\Delta_{21}=0$ and $\nu_{1} \leq 2$. Moreover, in this case, we have two cases: $d=\sigma+2$ or $d=2 \sigma-2$.

If $\sigma=d-2$, then the type becomes $\left[\sigma *(\sigma+2), 1 ; 2^{r}\right]$.
If $\sigma=\frac{d+2}{2}$, then $d=2 \sigma-2$ and from the formula

$$
(\sigma-3)(\tilde{B}-6)=(d-4)(d-5)+2 V=2(\sigma-3)(2 \sigma-7)
$$

it follows that $\tilde{B}=4 \sigma-8$.
When $B=0$, we have $f=2 \sigma-4$. The type becomes $\left[\sigma * 2(\sigma-2) ; 2^{r}\right]$.
When $B=1$, we have $2 f=3 \sigma-8$. Then σ is even and the type becomes $\left[\sigma * \frac{5 \sigma-8}{2}, 1 ; 2^{r}\right]$.

7.1 Estimate of d

We shall verify that if $\sigma \geq d-2$, then $B=1, f=2, d=\sigma+2$ and the type is $\left[(d-2) * d, 1 ; 2^{r}\right]$.

Actually, $P_{2,1}[D]=\frac{(d-4)(d-5)}{2}$ and $P_{3,1}[D]=\frac{(d-7)(d-8)}{2}$ imply

$$
\begin{equation*}
(2 Z-D) \cdot Z=(d-3)(d-6), \quad(3 Z-2 D) \cdot(2 Z-D)=(d-9)(d-6) \tag{33}
\end{equation*}
$$

By Lemma 1, we have the following two cases.
case (1): $|\sigma Z-(\sigma-2) D| \neq \emptyset$.
In this case, from

$$
\alpha Z+\beta(3 Z-2 D)=\sigma Z-(\sigma-2) D
$$

we obtain

$$
\alpha=\frac{6-\sigma}{2}, \beta=\frac{\sigma-2}{2} .
$$

Since $2 Z-D$ is nef for $\sigma \geq 4$, it follows that

$$
(\sigma Z-(\sigma-2) D) \cdot(2 Z-D) \geq 0
$$

Hence,

$$
\begin{aligned}
& (\sigma Z-(\sigma-2) D) \cdot(2 Z-D) \\
& =(\alpha Z+\beta(3 Z-2 D)) \cdot(2 Z-D) \\
& =\alpha Z \cdot(2 Z-D)+\beta(3 Z-2 D) \cdot(2 Z-D) \\
& =\alpha(d-3)(d-6)+\beta(d-6)(d-9) \\
& =\frac{6-\sigma}{2}(d-3)(d-6)+\frac{\sigma-2}{2}(d-6)(d-9) \\
& \geq 0 .
\end{aligned}
$$

By $d>6$, we obtain $2 d-3 \sigma \geq 0$. Hence, $\sigma \leq \frac{2 d}{3}$.

By hypothesis, $\sigma \geq d-2$. Thus $\frac{2 d}{3} \geq d-2$, which induces $d \leq 6$. This contradicts the hypothesis that $d>6$.
case (2): $B=1,2 f<\sigma$ and $|e Z-(e-3) D| \neq \emptyset$.
Then solving the following equation:

$$
\alpha Z+\beta(3 Z-2 D)=e Z-(e-3) D
$$

we obtain

$$
\alpha=\frac{9-\sigma}{2}, \beta=\frac{e-3}{2} .
$$

Since $2 Z-D$ is nef for $\sigma \geq 4$, it follows that

$$
(e Z-(e-3) D) \cdot(2 Z-D) \geq 0 .
$$

By the same argument as before, we conclude that $d \geq e$.
But by hypothesis, $\sigma \geq d-2$.
On the other hand, $e=f+\sigma \geq \nu_{1}+\sigma$. Thus $d \geq e \geq \nu_{1}+\sigma$; thus $\sigma \geq d-2 \geq \nu_{1}+\sigma-2$. Hence, $\nu_{1}=1,2$.

If $\nu_{1}=1$ then $f \geq 2$ by $\#$ minimality and hence, $e-\sigma=2$ and $f=2$. The type becomes $[\sigma *(\sigma+2), 1 ; 1]$. Contracting Δ_{∞} into a point, we have a singular plane curve with only one double point.

If $\nu_{1}=2$ then $e-\sigma=2, f=2$. In this case, The type becomes $[\sigma *(\sigma+$ 2), $\left.1 ; 2^{r}\right]$. Contracting Δ_{∞} into a point, we have a singular plane curve with $r+1$ double points.

Apart from this case, we have $d \geq 2 \sigma-1$.

7.2 Numerical examples

Table 15: types in which $P_{2,1}[D] \geq \frac{(d-4)(d-5)}{2}$ and $P_{3,1}[D]=\frac{(d-7)(d-8)}{2}$ with $10 \leq d \leq 21$ and $\Delta_{21}=t_{2}=0$

d	$[\sigma * e, B ;$ multiplicities $]$	ν_{1}
10	$[6 * 8 ; 1]$	1
11	$\left[6 * 11 ; 3^{3}\right]$	3
12	$\left[6 * 15 ; 3^{8}\right]$	3
12	$[7 * 10 ; 1]$	1
13	$\left[6 * 20 ; 3^{15}\right]$	3
13	$\left[7 * 16,1 ; 3^{2}\right]$	3
14	$\left[6 * 26 ; 3^{24}\right]$	3
14	$\left[7 * 19,1 ; 3^{5}\right]$	3
14	$[8 * 12 ; 1]$	1
15	$\left[6 * 33 ; 3^{35}\right]$	3
15	$\left[7 * 19 ; 3^{9}\right]$	3
16	$\left[6 * 41 ; 3^{48}\right]$	3
16	$\left[7 * 23 ; 3^{14}\right]$	3
16	$\left[8 * 17 ; 3^{4}\right]$	3
16	$\left[8 * 18 ; 4^{3}\right]$	4
16	$[9 * 14 ; 1]$	1
17	$\left[6 * 50 ; 3^{63}\right]$	3
17	$\left[7 * 31,1 ; 3^{20}\right]$	3
17	$\left[8 * 20 ; 3^{7}\right]$	3
17	$\left[8 * 21 ; 4^{3}, 3^{3}\right]$	4
17	$[9 * 21,1 ; 4]$	4

Table 16: types in which $P_{2,1}[D] \geq \frac{(d-4)(d-5)}{2}$ and $P_{3,1}[D]=\frac{(d-7)(d-8)}{2}$ with $18 \leq d \leq 20, t_{2}=0$

d	$[\sigma * e, B ;$ multiplicities $]$	ν_{1}
18	$\left[6 * 60 ; 3^{80}\right]$	3
18	$\left[7 * 36,1 ; 3^{27}\right]$	3
18	$\left[8 * 24 ; 4^{2}, 3^{8}\right]$	4
18	$\left[8 * 25 ; 4^{5}, 3^{4}\right]$	4
18	$\left[8 * 26 ; 4^{8}\right]$	4
18	$\left[9 * 19 ; 4,3^{2}\right]$	4
18	$[10 * 16 ; 1]$	1
19	$\left[6 * 71 ; 3^{99}\right]$	3
19	$\left[7 * 38 ; 3^{35}\right]$	3
19	$\left[8 * 27 ; 3^{15}\right]$	3
19	$\left[8 * 28 ; 4^{3}, 3^{11}\right]$	4
19	$\left[8 * 29 ; 4^{6}, 3^{7}\right]$	4
19	$\left[8 * 30 ; 4^{9}, 3^{3}\right]$	4
19	$\left[9 * 26,1 ; 3^{6}\right]$	3
19	$\left[9 * 22 ; 4^{2}, 3^{3}\right]$	4
19	$\left[9 * 27,1 ; 4^{4}\right]$	4
20	$\left[6 * 83 ; 3^{120}\right]$	3
20	$\left[7 * 44 ; 3^{44}\right]$	3
20	$\left[8 * 31 ; 3^{20}\right]$	3
20	$\left[8 * 32 ; 4^{3}, 3^{16}\right]$	4
20	$\left[8 * 33 ; 4^{6}, 3^{12}\right]$	4
20	$\left[8 * 34 ; 4^{9}, 3^{8}\right]$	4
20	$\left[8 * 35 ; 4^{12}, 3^{4}\right]$	4
20	$\left[8 * 36 ; 4^{15}\right]$	4
20	$\left[9 * 29,1 ; 3^{9}\right]$	3
20	$\left[9 * 25 ; 4^{2}, 3^{6}\right]$	4
20	$\left[9 * 30,1 ; 4^{4}, 3^{3}\right]$	4
20	$\left[9 * 26 ; 4^{6}\right]$	4
20	$\left[10 * 21 ; 4^{2}\right]$	4
20	$[11 * 18 ; 1]$	1

References

[1] Coolidge J.L., A Treatise on Algebraic Plane Curves, Oxford Univ. Press.,(1928).
[2] Hartshorne R., Curves with high self-intersection on algebraic surfaces Publ.I.H.E.S. vol.36, (1970), 111-126.
[3] Iitaka S., Algebraic Geometry, An Introduction of Birational Geometry of Algebraic Varieties, Springer Verlag. (1981).
[4] Iitaka S., Basic structure of algebraic varieties, Advanced Studies of Pure Mathematics, 1, 1983, Algebraic Varieties and Analytic Varieties, Kinokuniya (1983) 303-316.
[5] Iitaka S., On irreducible plane curves, Saitama Math. J. 1 (1983), 47-63.
[6] Iitaka S., Birational geometry of plane curves ,Tokyo J. Math., 22(1999), pp289-321.
[7] Iitaka S., On logarithmic plurigenera of algebraic plane curves ,in Iitaka's web page. Birational geometry of plane curves ,Tokyo J. Math., 22(1999), pp289-321.
[8] Kodaira K., On compact analytic surfaces II, Ann. of Math., 77(1963), 563-626
[9] Matsuda O., On numerical types of algebraic curves on rational surfaces, Tokyo Journal of Mathematics vol.24, No.2, pp.359-367, December 2001.
[10] Matsuda O., Birational classification of curves on irrational ruled surfaces, Tokyo Journal of Mathematics vol.25, No.1, pp.139-151, June 2002.
[11] Nagata M., On rational surfaces I., Mem. Coll. Sci. Univ. Kyoto 32, 351-370 (1960).
[12] Semple, J.G. and Roth,L. Introduction to Algebraic Geometry, Cambridge University Press, 1949.

