Birational characterization of nonsingular plane curves

Shigeru Iitaka Gakushuin University

February 25, 2006

Contents

1	Introduction	2
2	Some basic results	3
	2.1 Minimal models	3
	2.2 Formulas	5
	2.3 virtual mixed plurigenera	5
	2.4 Hartshorne's lemma	6
3	Bigenus and genus	8
	3.1 Estimate of d	9
		13
		14
4	D^2 and genus	16
	4.1 Estimate of d	18
		20
	4.3 Examples \ldots \ldots \ldots \ldots \ldots \ldots \ldots	21
5	Z^2 and D^2	21
	5.1 Estimate of d	24
		26
		29
6	$P_{3,1}[D]$ and genus	30
Ũ		31
		36
	r	
7	$P_{2,1}[D] \text{ and } P_{3,1}[D]$	38
		39
	7.2 Numerical examples	40

1 Introduction

We shall study algebraic plane curves C on the projective plane \mathbf{P}^2 defined over the field of complex numbers. Birational maps between from \mathbf{P}^2 into itself are called Cremona transformations. If C_1 is a proper transform of C by a Cremona transformation, the pair (\mathbf{P}^2, C_1) is said to be birationally equivalent to (\mathbf{P}^2, C) . The purpose of this paper is to give certain conditions which characterize (\mathbf{P}^2, D) where D is a nonsingular curve, in the sense of birational equivalence.

In general, let C be a curve on a nonsingular projective surface S. Pairs (S, C) of S and C are objects of our study. Two pairs (S, C) and (S_1, C_1) are said to be birationally equivalent if there exists a birational map $h: S \to S_1$ such that the proper transform h[C] coincides with C_1 . If D is a nonsingular curve on S, then it is easy to check that dim $|mK_S + aD| + 1$, K_S being a canonical divisor on S, are birational invariants whenever $m \ge a \ge 0$. dim $|mK_S + aD| + 1$ are denoted by $P_{m,a}[D]$, which may be called mixed plurigenera of the pair (S, D). $P_{m,m}[D]$ turns out to be logarithmic plurigenera of an open surface S - D, denoted by $\overline{P_m}(S - D)$. For simplicity, $P_{m,m}[D]$ is indicated by $P_m[D]$, by which Kodaira dimension of the pair (S, C), written as $\kappa[C]$, is defined.

Hereafter, S is assumed to be a rational surface. Then $P_1[D]$ coincides with the genus of D, denoted by g(D). Making use of mixed plurigenera, we obtain the characterizations of a line and a nonsingular cubic as follows:

Theorem 1 Let (S, D) be a pair of a nonsingular projective surface S and a curve on S.

If $P_{2,1}[D] = 0$ and g(D) = 0 then (S, D) is birationally equivalent to (\mathbf{P}^2, L) , L being a line.

Note that the condition $P_{2,1}[D] = 0$ and g(D) = 0 is equivalent to $P_2[D] = 0$.

Theorem 2 If $P_{2,1}[D] = 1$ and g(D) = 1 then (S, D) is birationally equivalent to (\mathbf{P}^2, C_3) , C_3 being a nonsingular cubic.

These results are mainly due to [1, p398,p404]. We shall extend his results into higher degree cases.

We begin with computing mixed plurigenera $P_{m,a}[D]$ when $(S, D) = (\mathbf{P}^2, C_d)$, C_d being a nonsingular curve of degree d. For $m \ge a$ and $d \ge 4$,

1.
$$P_{m,a}[D] = \frac{(3m-1-ad)(3m-2-ad)}{2},$$

2. $P_m[D] = \frac{((d-3)m+1)((d-3)m+2)}{2},$
3. $P_1[D] = \frac{(d-2)(d-1)}{2} = g(D),$
4. $P_2[D] = (d-2)(2d-5),$

5.
$$P_{2,1}[D] = \frac{(d-4)(d-5)}{2},$$

6. $P_{3,1}[D] = \frac{(d-7)(d-8)}{2}$ where $d \ge 7$

One can ask to what extent (S, D) is determined by its mixed plurigenera. Our purpose is to establish some characterizations of pairs of \mathbf{P}^2 and nonsingular curves using two mixed plurigenera, which will be established in main results. For examples, if $P_2[D] = 6$ and g = 3 then (S, D) is birationally equivalent to (\mathbf{P}^2, C_4) .

The similar results are obtained for d = 6. However, in the case of d = 5, we have a counter example:

If $P_2[D] = 10$ and g = 6 then (S, D) is birationally equivalent to either (\mathbf{P}^2, C_5) or (\mathbf{P}^2, C_6) , where C_6' is a plane curve of degree 6 with two singular points whose multiplicities are 2 and 3.

2 Some basic results

2.1 Minimal models

A non-singular pair (S, D) is said to be *relatively minimal*, whenever the intersection number $D \cdot E \geq 2$ for any exceptional curve (of the first kind) E on S such that $E \neq D$. Moreover, the pair (S, D) is said to be *minimal*, if every birational map from any non-singular pair (S_1, D_1) into (S, D) turns out to be regular. Any relatively minimal pair (S, D) is minimal if $\kappa[D] = 2$ (see Iitaka [5]).

Relatively minimal models of rational surfaces are the projective plane \mathbf{P}^2 or $\mathbf{P}^1 \times \mathbf{P}^1$ or a \mathbf{P}^1 – bundle over \mathbf{P}^1 , which has a section Δ_{∞} with negative self intersection number. The last surface is denoted by a symbol Σ_B where -B denotes the self intersection number ${\Delta_{\infty}}^2$. Here, we call Σ_B a Hirzebruch surface of degree B after Kodaira. The Picard group of Σ_B is generated by a section Δ_{∞} and a fiber $F_c = \rho^{-1}(c)$ of the \mathbf{P}^1 – bundle, where $\rho : \Sigma_B \to \mathbf{P}^1$ is the projection.

Let C be an irreducible curve on Σ_B . Then there exist integers σ and e such that

$$C \sim \sigma \Delta_{\infty} + eF_c.$$

Here the symbol \sim means the linear equivalence between divisors.

We have $C \cdot F_c = \sigma$ and $C \cdot \Delta_{\infty} = e - B \cdot \sigma$. Hereafter, suppose that $C \neq \Delta_{\infty}$. Thus $C \cdot \Delta_{\infty} \geq 0$ and hence, $e \geq B\sigma$. If B > 0 then ${\Delta_{\infty}}^2 = -B < 0$ and such a section Δ_{∞} is uniquely determined. For a surface $\Sigma_0 = \mathbf{P}^1 \times \mathbf{P}^1$, we get $F_c \sim \mathbf{P}^1 \times \text{point}$ and $\Delta_{\infty} \sim \text{point} \times \mathbf{P}^1$. We may assume that $e \geq \sigma$. Thus σ and e are uniquely determined for a given curve C on Σ_B .

By $\nu_1, \nu_2, \dots, \nu_r$ we denote the multiplicities of singular points of C where $\nu_1 \geq \nu_2 \geq \dots \geq \nu_r$.

The symbol $[\sigma * e, B; \nu_1, \nu_2, \dots, \nu_r]$ is said to be the type of a pair (Σ_B, C) . If B=0, we omit 0 in the symbol of type; namely, $[\sigma * e; \nu_1, \nu_2, \dots, \nu_r]$ stands for $[\sigma * e, B; \nu_1, \nu_2, \dots, \nu_r]$.

Assume that $\sigma \geq 2\nu_1$ and $e \geq \sigma + B\nu_1$. Moreover, if B = 1 then assume $e - \sigma > 1$. When the above conditions are satisfied, the pair (Σ_B, C) is said to be # minimal. Occasionally, the # minimal pair (Σ_B, C) is said to be a # minimal model of a pair (S, D), if it is birationally equivalent to (S, D) (See [5]). Moreover, any minimal pair (S, D) is obtained from a # minimal model by resolving singularities of C, if it is not isomorphic to (\mathbf{P}^2, C_d) , C_d being a nonsingular curve (See [5]).

If (S, D) is minimal and $\kappa[D] = 2$, then the following results are obtained (see [7]).

- 1. If $g \ge 1$ and $\sigma \ge 4$ then $P_2[D] = Z^2 + 2\overline{g} + 1$.
- 2. If $g \ge 0$ and $\sigma \ge 4$ then $P_{2,1}[D] = Z^2 \overline{g} + 1$.
- 3. If $g \ge 0$, $\sigma \ge 6$ and the type is not $[6 * 8, 1; 2^r]$ for $r \ge 0$, then $P_{3,1}[D] = 3Z^2 7\overline{g} + D^2 + 1$.
- 4. If $g \ge 1$ then $P_2[D] = P_{2,1}[D] + 3\overline{g}$.
- 5. If g = 0 then $P_2[D] = P_{2,1}[D] = Z^2 + 2$.

Here $\overline{g} = g - 1$.

The next result may be noteworthy.

Remark 1 If the pair (S,D) satisfies that $g(D) = \frac{(d-2)(d-1)}{2}$, $P_2[D] = (d-2)(2d-5)$, $P_{3,1}[D] = \frac{(d-7)(d-8)}{2}$, then (S,D) is birationally equivalent to (\mathbf{P}^2, C_d) , where C_d is a nonsingular curve with degree d.

In order to verify this, we can assume that (S, D) is minimal.

It is easy to check $\kappa[D] = 2$. Then $Z = K_S + D$ is nef and big. By the formulas $P_2[D] = Z^2 + 2\overline{g}, P_{3,1}[D] = 3Z^2 + D^2 - 7\overline{g}, \overline{g}$ being g-1, the hypothesis implies that $D^2 = d^2, Z^2 = (d-3)^2$. From the formula $Z^2 = K_S^2 - D^2 + 4\overline{g}$, it follows that $(d-3)^2 = K_S^2 - d^2 + 2d(d-3)$. Hence, $K_S^2 = 9$. This yields that $S = \mathbf{P}^2$, which completes the proof.

This result suggests that giving values of three mixed plurigenera such as $g, P_2[D], P_{3,1}[D]$ is superabundant.

2.2 Formulas

Letting g_0 be the virtual genus of C , K_0 a canonical divisor on Σ_B and defining Z_0 to be $C+K_0$, we get

$$g_0 = (e-1)(\sigma-1) - \frac{B\sigma(\sigma-1)}{2},$$
$$C^2 = 2e\sigma - \sigma^2 B.$$

Moreover, letting $f = e - B\sigma = C \cdot \Delta_0 \ge 0$, we obtain

$$C \sim \sigma \Delta_0 + f F_c,$$

$$K_0 \sim -2\Delta_0 + (B-2)F_c,$$

$$Z_0 = C + K_0 \sim (\sigma - 2)\Delta_0 + (f - 2 + B)F_c$$

where Δ_0 is an irreducible curve linearly equivalent to $\Delta_{\infty} + BF_c$. Denoting $2f + \sigma B$ by \tilde{B} , we find

$$g_0 = \frac{(\sigma - 1)(\tilde{B} - 2)}{2}, \quad C^2 = \sigma \tilde{B},$$
$$Z_0^2 = (\sigma - 2)(\tilde{B} - 4),$$
$$(2Z_0 - C) \cdot Z_0 = (\sigma - 3)(\tilde{B} - 6) - 2,$$
$$2Z_0 - C) \cdot (3Z_0 - 2C) = (\sigma - 5)(\tilde{B} - 10) - 2$$

These formulas suggest that \tilde{B} is very useful. Hence, we introduce the following notion.

Two types $[\sigma * e, B; \nu_1, \nu_2, \dots, \nu_r]$ and $[\sigma * e', B'; \nu_1, \nu_2, \dots, \nu_r]$ are said to be **similar** if $\tilde{B} = \tilde{B}'$, where $f' = e' - \sigma B'$ and $\tilde{B}' = 2f' + \sigma B'$. For simplicity, we omit the similar types in the following tables of types of pairs.

2.3 virtual mixed plurigenera

(

If C is a curve on S, define $VP_{m,a}[C]$ to be dim $|mK_S + aC| + 1$, which we call virtual mixed plurigenus of the pair (S, C).

Let (S, D) be a pair derived from a # minimal pair (Σ_B, C) of type $[\sigma * e, B; \nu_1, \dots, \nu_r]$, by resolving singularities of C. Then by E_i denoting the exceptional divisor arising from the singular points p_j of C, we obtain

$$mK_S + aD \sim mK_0 + aC + \sum_{j=1}^r (m - a\nu_i)E_i.$$

Suppose that $m \ge a\nu_1$. Then

$$|mK_S + aD| = |mK_0 + aC| + \sum_{j=1}^r (m - a\nu_i)E_i.$$

Hence,

$$VP_{m,a}[C] = P_{m,a}[D].$$

Therefore, we obtain the next result.

Lemma 1 Let (S, D) be a pair. If $m \ge a\nu_1$ then $VP_{m,a}[C] = P_{m,a}[D]$.

Equivalently, the next result follows. If $VP_{m,a}[C] > P_{m,a}[D]$ then $m < a\nu_1$

Note that this result implies the famous Noether's inequality in the theory of Cremonian geometry.

2.4 Hartshorne's lemma

 σ

The next result came from the proof in [2, Hartshorne, Proposition (3.2), p118].

Lemma 2 Let (S, D) be a minimal pair derived from a # minimal pair (Σ_B, C) of type $[\sigma * e, B; \nu_1, \cdots, \nu_r]$, by resolving singularities of C. Then we have either $(1) |\sigma Z - (\sigma - 2)D| \neq \emptyset$ or $(2) B = 1, 2f < \sigma$ and $|eZ - (e - 3)D| \neq \emptyset$.

Proof. By E_i denoting the exceptional divisor arising from the singular points p_j of C, we obtain

$$Z - (\sigma - 2)D = \sigma K_S + 2D$$

$$\sim 2(\sigma \Delta_0 + fF_c - \sum_{j=1}^r \nu_i E_i)$$

$$+ \sigma (-2\Delta_0 + (B-2)F_c + \sum_{j=1}^r E_i)$$

$$\sim (2f + \sigma (B-2))F_c + \sum_{j=1}^r (\sigma - 2\nu_i)E_i.$$

Letting ε_1 be $2f + \sigma(B-2)$, we have the following two cases:

(1) If B = 0 then $\varepsilon_1 = 2f - 2\sigma \ge 0$ and if $B \ge 2$ then $\varepsilon_1 \ge 0$.

(2) if B = 1 and if $\varepsilon_1 = 2f - \sigma < 0$ then $3\sigma - 2e = \sigma - 2f = -\varepsilon_1 > 0$ and hence, $|\sigma Z - (\sigma - 2)D| = \emptyset$. In this case,

$$e - 3\nu_i \ge e - 3\nu_1 \ge e - \nu_1 - 2\nu_1 \ge \sigma - 2\nu_1 \ge 0.$$

Thus,

$$eZ - (e - 3)D = eK_S + 3D$$

$$\sim 3(\sigma\Delta_0 + fF_c - \sum_{j=1}^r \nu_i E_i)$$

$$+ e(-2\Delta_0 + (B - 2)F_c + \sum_{j=1}^r E_i)$$

$$\sim (3\sigma - 2e)(\Delta_0 - F_c) + \sum_{j=1}^r (e - 3\nu_i)E_i$$

$$\sim (3\sigma - 2e)\Delta_\infty + \sum_{j=1}^r (e - 3\nu_i)E_i.$$

Therefore, $|eZ - (e - 3)D| \neq \emptyset$, which completes the proof.

Note that $P_{\sigma,2}[D] = VP_{\sigma,2}[C] and P_{e,3}[D] = VP_{e,3}[C].$

The next result follows from Lemma 1 immediately.

Lemma 3 Let (S, D) be a minimal pair derived from a # minimal pair (Σ_B, C) of type $[\sigma * e, B; \nu_1, \cdots, \nu_r]$.

- 1. Either (1) $\sigma Z^2 \ge 2(\sigma 2)\overline{g}$ or (2) B = 1 and $eZ^2 \ge 2\overline{g}(e 3)$.
- 2. Either (1) $2\sigma \overline{g} \ge (\sigma 2)D^2$ or (2) B = 1 and $2\overline{g}e \ge (e 3)D^2$.

Here g denotes the genus of D.

Proof. The assertion 1 follows from the fact that Z is nef where g > 0. In order to verify (1) of the assertion 2, assume that

$$2\sigma\overline{g} - (\sigma - 2)D^2 = (\sigma Z - (\sigma - 2)D) \cdot D < 0.$$

Then since $|\sigma Z - (\sigma - 2)D| \neq \emptyset$, it follows that $D^2 < 0$ and $2\sigma \overline{g} < (\sigma - 2)D^2 \leq 0$. Hence, g = 0. Then noting that $\sigma \geq 4$, we have

$$-2 - \frac{4}{\sigma - 2} \ge -4$$
 and $-4 \ge D^2$

and thus

$$-2 - \frac{4}{\sigma - 2} \ge D^2.$$

It follows that $2\sigma \overline{g} = -2\sigma \ge (\sigma - 2)D^2$.

By the similar argument, we are done in the assertion 2.

3 Bigenus and genus

Suppose that (S, D) is a minimal pair which satisfies (1) $P_2[D] = (2d-5)(d-2)$, for some $d \ge 4$ and (2) $\delta = g - \frac{(d-1)(d-2)}{2} \ge 0$, g being the genus of D. Assume that (S, D) is not birationally equivalent to $(\mathbf{P}^2, C_d), C_d$ being a

Assume that (S, D) is not birationally equivalent to $(\mathbf{P}^2, C_d), C_d$ being a nonsingular curve. Then (S, D) is obtained from a # minimal model (Σ_B, C) with type $[\sigma * e, B; \nu_1, \cdots, \nu_r]$ by shortest resolution of singularities of C. From the formula $P_2[D] = Z^2 + 2g - 1$, Z being $K_S + D$ ([7]), it follows that

$$(2d-5)(d-2) = Z^{2} + 2g - 1 = Z^{2} + d^{2} - 3d + 2 + 2\delta - 1.$$

Hence,

$$Z^2 = (d-3)^2 - 2\delta.$$
 (1)

Denoting by t_j the numbers of singular points of C with multiplicities j, define X to be $\sum_{j=2}^{\nu_1} \frac{j(j-1)}{2} t_j$. Then by genus formula,

$$(\sigma - 1)(\tilde{B} - 2) = 2g + 2X = d^2 - 3d + 2 + 2\delta + 2X.$$
 (2)

Moreover, defining U to be $\sum_{j=2}^{\nu_1} (j-1)^2 t_j$, we get

$$Z^{2} + U = (\sigma - 2)(\tilde{B} - 4).$$
(3)

Multiplying (3) by $\sigma - 1$, we have

$$\begin{aligned} (\sigma - 1)Z^2 + (\sigma - 1)U &= (\sigma - 2)((\sigma - 1)(\tilde{B} - 2) - 2(\sigma - 1)) \\ &= (\sigma - 2)(2g + 2X - 2(\sigma - 1)) \\ &= (\sigma - 2)(d^2 - 3d + 2 + 2\delta) + 2(\sigma - 2)X - 2(\sigma - 1)(\sigma - 2). \end{aligned}$$

On the other hand,

$$(\sigma - 1)Z^{2} + (\sigma - 1)U = (\sigma - 1)((d - 3)^{2} - 2\delta) + (\sigma - 1)U$$

From these, it follows that

$$(\sigma - 1)((d - 3)^2 - 2\delta) - (\sigma - 2)(d^2 - 3d + 2)$$

$$= 2\delta(\sigma - 2) + 2(\sigma - 2)X - (\sigma - 1)U - 2(\sigma - 1)(\sigma - 2)$$

Defining Θ_2 to be $2(\sigma - 2)X - (\sigma - 1)U$, we have

$$\Theta_2 = \sum_{j=2}^{\nu_1} \{ (\sigma - 2)j(j-1) - (\sigma - 1)(j-1)^2 \} t_j$$

$$= \sum_{j=2}^{\nu_1} \{ (j-1)(\sigma - j - 1) \} t_j,$$

 $\quad \text{and} \quad$

$$(\sigma - 1)(d - 3)^2 - (\sigma - 2)(d^2 - 3d + 2) + 2(\sigma - 1)(\sigma - 2)$$
$$= d^2 - 3\sigma d + 2\sigma^2 + \sigma - 1$$
$$= (d - \sigma - 1)(d - 2\sigma + 1).$$

Finally, we find the following formula:

$$(d - \sigma - 1)(d + 1 - 2\sigma) = 2(2\sigma - 3)\delta + \Theta_2,$$
(4)

where

$$\Theta_2 = \sum_{j=2}^{\nu_1} (j-1)(\sigma-j-1)t_j = (\sigma-3)t_2 + 2(\sigma-4)t_3 + 3(\sigma-5)t_4 + \cdots$$

By $(d - \sigma - 1)(d + 1 - 2\sigma) \ge 0$, we have either $d \ge 2\sigma - 1$ or $d \le \sigma + 1$.

3.1 Estimate of d

We shall show that $d \geq 2\sigma - 1$. First, by Lemma 2, we obtain either (1) $\sigma Z^2 \geq 2(\sigma - 2)\overline{g}$ or (2) B = 1 and $eZ^2 \geq 2(e - 3)\overline{g}$.

In the first case,

$$\sigma Z^2 = \sigma((d-3)^2 - 2\delta) \ge 2(\sigma - 2)\overline{g} = (\sigma - 2)(d(d-3) + 2\delta)$$

Thus,

$$(d-3)(2d-3\sigma) \ge 4(\sigma-1)\delta \ge 0.$$

Therefore,

$$\sigma \leq \frac{2d}{3}.$$

If $\sigma \geq d-1$ then

$$d-1 \le \sigma \le \frac{2d}{3}.$$

Hence, $d\leq 3,$ which concord at the hypothesis $d\geq 4,$ i.e., $d\geq 2\sigma-1.$

In the second case,

$$eZ^{2} = e((d-3)^{2} - 2\delta) \ge 2\overline{g}(e-3) = (e-2)(d(d-3) + 2\delta)$$

and so

$$(d-3)(2d-3e) \ge 4\delta(e-1) \ge 0.$$

Hence,

$$2d \ge 3e = 3(f + \sigma) \ge 3\nu_1 + 3\sigma;$$

thus

$$3\sigma \leq 2d.$$

If $\sigma \geq d-1$ then $2d > 3\sigma \geq 3d-3$, which implies that $d \leq 1$. This contradicts the hypothesis. Hence, $\sigma \geq d-1$ cannot occur. Thus, we conclude that $d \geq 2\sigma - 1$.

If $d = 2\sigma - 1$, then r = 0. By $Z^2 = (\sigma - 2)(\tilde{B} - 4)$ and $Z^2 = (d - 3)^2$, we obtain

$$\tilde{B} = 2(d-1), \tilde{B} = \frac{d+1}{2}B + 2f.$$

When one puts B = 0, we have f = e = d - 1 and the type is $\left[\frac{d+1}{2} * (d-1); 1\right]$. In general, the type becomes $\left[\frac{d+1}{2} * (d-1); 1\right]$ and its similar types.

Define k to be $d-2\sigma+1\geq 0.$ Then $d=2\sigma+k-1.$ Replacing d by $2\sigma+k-1,$ the formula (4) becomes

$$k(\sigma + k - 2) = 2(2\sigma - 3)\delta + \Theta_2.$$

If r > 0 then $k(\sigma + k - 2) \ge (k + 1)(\sigma - k - 3)$ and thus,

$$\sigma \le 2k^2 + 2k + 3.$$

Therefore, given k, we have σ such that $3 \leq \sigma \leq 2k^2 + 2k + 3$ and the equality

$$k(\sigma + k - 2) = 2(2\sigma - 3)\delta + (\sigma - 3)t_2 + 2(\sigma - 4)t_3 + 3(\sigma - 5)t_4 + \cdots$$

holds. This equation has a finite number of non-negative solutions $\sigma, \delta, t_2, t_3, \cdots$. For example, in the cases of k = 1, 2, 3, we have the following solutions listed in the next tables using computer.

d	$[\sigma * e , B;$ multiplicities]	ν_1	δ
8	$[4*9;2^3]$	2	0
10	$[5*13,1;2^2]$	2	0
14	[7*18, 1; 3]	3	0

Table 1: types with k = 1

Table 2: types with k = 2

d	$[\sigma * e , B;$ multiplicities]	ν_1	δ
9	$[4*13;2^8]$	2	0
11	$[5*16, 1; 2^5]$	2	0
13	$[6*15;2^4]$	2	0
13	$[6*16;3^3]$	3	0
15	$[7*17;3,2^2]$	3	0
17	$[8 * 19; 3^2]$	3	0
19	$[9 * 25, 1; 2^3]$	2	0
19	[9 * 21; 4, 2]	4	0
23	[11 * 30, 1; 3, 2]	3	0
25	[12 * 27; 5]	5	0
31	[15 * 40, 1; 4]	4	0

Table 3: types with k = 3

d	$[\sigma * e, B; multiplicities]$	ν_1	δ
10	$[4*18;2^{15}]$	2	0
10	$[4*15;2^5]$	2	1
12	$[5*17;2^9]$	2	0
12	$[5*18,1;2^2]$	2	1
14	$[6*18;2^7]$	2	0
14	$[6*19; 3^3, 2^3]$	3	0
14	[6*17;2]	2	1
16	$[7 * 23, 1; 2^6]$	2	0
16	$[7 * 20; 3^2, 2^3]$	3	0
16	$[7 * 24, 1; 3^4]$	3	0
18	$[8 * 22; 4, 3, 2^2]$	4	0
18	$[8 * 23; 4^3]$	4	0
20	$[9 * 23; 2^5]$	2	0
20	$[9*28,1;3^3]$	3	0
20	$[9 * 28, 1; 4, 2^3]$	4	0
20	$[9 * 24; 4^2, 2]$	4	0
20	$\left[9*27,1;1\right]$	1	1

Observing these tables, we obtain the following result.

Proposition 1 If $P_2[D] = (d-2)(2d-5)$ and $\delta = g - \frac{(d-1)(d-2)}{2} \ge 0$, then $d \ge 4\nu_1 + 3$ except for the following cases:

1. $d = 8, [4 * 9; 2^3], d = 4\nu_1,$ 2. $d = 10, [5 * 13, 1; 2^2], d = 4\nu_1 + 2,$ 3. $d = 9, [4 * 13; 2^8], d = 4\nu_1 + 1,$ 4. $d = 13, [6 * 16; 3^3], d = 4\nu_1 + 1,$ 5. $d = 10, [4 * 18; 2^{15}], d = 4\nu_1 + 2,$ 6. $d = 10, [4 * 15; 2^5], d = 4\nu_1 + 2,$ 7. $d = 14, [6 * 19; 3^3, 2^3], d = 4\nu_1 + 2,$ 8. $d = 18, [8 * 22; 4, 3, 2^2], d = 4\nu_1 + 2,$ 9. $d = 18, [8 * 23; 4^3], d = 4\nu_1 + 2.$

3.2 Converse

We shall show the converse.

Proposition 2 Suppose that nonnegative integers $d \ge 4, \sigma, \delta, t_j (j = 2, 3, \cdots)$ satisfy that

$$(d - \sigma - 1)(d + 1 - 2\sigma) = 2(2\sigma - 3)\delta + \Theta_2$$

where

$$\Theta_2 = \sum_{j=2}^{\nu_1} (j-1)(\sigma - j - 1)t_j$$

Moreover, assume that there exists a minimal pair (S, D) obtained from a #minimal model (Σ_B, C) with type $[\sigma * e, B; \nu_1, \nu_1, \cdots, \nu_r]$ which corresponds to integers $d, \sigma, \Delta, t_j (j = 2, 3, \cdots)$. Then $P_2[D] = (2d - 5)(d - 2)$.

Proof. Letting $X = \sum_{j=2}^{\nu_1} \frac{j(j-1)}{2} t_j$ and $U = \sum_{j=2}^{\nu_1} (j-1)^2 t_j$, we have $\Theta_2 = 2(\sigma-2)X - (\sigma-1)U$. Considering both sides of the formula (4) mod $(\sigma-1)$, we obtain

$$(d - \sigma - 1)(d + 1 - 2\sigma) \equiv (d - 1)(d - 2) \mod (\sigma - 1),$$

$$2(2\sigma - 3)\delta + \Theta_2 \equiv -2\delta + \Theta_2 \mod (\sigma - 1),$$

$$\Theta_2 = 2(\sigma - 2)X - (\sigma - 1)U \equiv -2X \mod (\sigma - 1).$$

Hence, from the formula (4), it follows that

$$(d-1)(d-2) + 2\delta + 2X \equiv 0 \mod (\sigma - 1),$$

which implies that $\frac{d^2 - 3d + 2 + 2\delta + 2X}{\sigma - 1}$ is an integer. Then define \tilde{B}_0 to be $2 + \frac{d^2 - 3d + 2 + 2\delta + 2X}{\sigma - 1}$.

Now assume that there exists a minimal pair (S, D) obtained from a # minimal model (Σ_B, C) by shortest resolution of singularities, whose type is $[\sigma * e, B; \nu_1, \cdots, \nu_r]$, where $\tilde{B} = \tilde{B}_0$ and the sequence of multiplicities ν_2, ν_3, \cdots corresponds to the sequence of t_2, t_3, \cdots . Indeed, when \tilde{B}_0 is even, one can put $B = 0, e = f = \frac{\tilde{B}_0}{2}$. Further, when \tilde{B}_0 is odd, σ is verified to be odd and so one can put $B = 1, e = \frac{\tilde{B}_0 + \sigma}{2}$.

By genus formula,

$$(\sigma - 1)(\ddot{B} - 2) = 2g + 2X,$$

where g is the genus of D. However, by the definition of \tilde{B} , we find

$$(\sigma - 1)(B - 2) = d^2 - 3d + 2 + 2\delta + 2X.$$

So, the genus g coincides with $d^2 - 3d + 2 + 2\delta$.

Next, we shall prove that $Z^2 = (d-3)^2 - 2\delta$.

In the previous section, we assumed $Z^2 = (d-3)^2 - 2\delta$. But here, the equation is not assumed. Define an invariant ε to be $Z^2 - ((d-3)^2 - 2\delta)$. Thus $Z^2 = \varepsilon + (d-3)^2 - 2\delta$ and then

$$(\sigma - 2)(\tilde{B} - 4) = Z^2 + U = \varepsilon + (d - 3)^2 - 2\delta + U.$$

By multiplying this by $\sigma - 1$, we have

$$\begin{aligned} (\sigma-1)(\varepsilon+(d-3)^2)+(\sigma-1)U\\ &=(\sigma-2)((\sigma-1)(\tilde{B}-2)-2(\sigma-1))\\ &=(\sigma-2)(d^2-3d+2+2\delta)+2(\sigma-2)X-2(\sigma-1)(\sigma-2). \end{aligned}$$

From this , it follows that

$$\begin{aligned} (\sigma - 1)(\varepsilon + (d - 3)^2 - 2\delta) &- (\sigma - 2)(d^2 - 3d + 2) \\ &= (\sigma - 1)\varepsilon + 2\delta(\sigma - 2) + 2(\sigma - 2)X - (\sigma - 1)U - 2(\sigma - 1)(\sigma - 2). \end{aligned}$$

Thus we obtain

$$(\sigma - 1)\varepsilon + (d - \sigma - 1)(d + 1 - 2\sigma) = 2(2\sigma - 3)\delta + \Theta_2.$$
 (5)

Recall that we assumed the equality (4). Then the formula (5) induces $(\sigma - 1)\varepsilon = 0$. Hence, $\varepsilon = 0$. Thus $Z^2 = (d - 3)^2 - 2\delta$ is derived and we establish $P_2[D] = (2d - 5)(d - 2)$.

3.3 Examples

If $\sigma = 3$ then $\nu_1 = 1$ and the formula (4) becomes $(d-4)(d-5) = 6\delta$. Hence,

$$d \equiv 1, 2, 4, 5 \mod 6.$$

Let [3 * e, B; 1] be the type. Then $Z^2 = \tilde{B} - 4 = (d - 3)^2 - 2\delta$. From this it follows that

$$\tilde{B} = (d-3)^2 + 4 - \frac{(d-4)(d-5)}{3} = \frac{2d^2 - 9d + 19}{3}.$$

More precisely, when $d \equiv 1,5 \mod 6$, it is easy to check that $\frac{2d^2-9d+19}{3}$ is even. Hence, one can put $B = 0, f = \frac{2d^2-9d+19}{6}$.

When $d \equiv 2,4 \mod 6$, it is easy to check that $\frac{2d^2 - 9d + 19}{3}$ is odd. Hence, one can put $B = 1, 2f + 3 = \tilde{B}$. Thus $f = \frac{2d^2 - 9d + 10}{6}$.

Suppose that $\delta = 0$. Then d = 4, 5.

If d = 4 then B = 1, f = 1, e = 4. Then the type is [3 * 4, 1; 1]. But this contradicts the condition of #- minimality. If d = 5 then B = 0, e = f = 4. Then the type is $[3 * 4; 1], \delta = 0$. If d = 7 then B = 0, e = 9. Then the type is $[3 * 9; 1], \delta = 1$. If d = 8 then B = 1, e = 14. Then the type is $[3 * 14, 1; 1], \delta = 2$. If d = 10 then B = 1, e = 23. Then the type is $[3 * 23, 1; 1], \delta = 5$. If d = 11 then B = 0, e = 27. Then the type is $[3 * 27; 1], \delta = 7$.

If $\sigma \ge 4$ then suppose that r = 0 and $\delta = 0$. Using computer one has the following tables of types where $5 \le d \le 12$.

Table 4: types of pairs where $P_2[D] = (d-2)(2d-5)$ with $5 \le d \le 12$ and $\delta \ge 0$

	-		
	$[\sigma * e , B; multiplicities]$	ν_1	δ
5	[3 * 4; 1]	1	0
7	[3 * 9; 1]	1	1
7 7 8	[4 * 6; 1]	1	0
8	[3*14,1;1]	1	2
8	$[4*9;2^3]$	2	0
9	$[4 * 13; 2^8]$	2	0
9	[5 * 8; 1]	1	0
10	[3*23,1;1]	2	5
10	$[4*18;2^{15}]$	2	0
10	$[4 * 15; 2^5]$	2	1
10	$[5*13,1;2^2]$	2	0
11	[3 * 27; 1]	1	7
11	$[4 * 24; 2^{24}]$	2	0
11	$[4 * 21; 2^{14}]$	2	1
11	$[4*18;2^4]$	2	2
11	$[5*16,1;2^5]$	2	0
11	[6 * 10; 1]	1	0
12	$[4 * 31; 2^{35}]$	2	0
12	$[4 * 28; 2^{25}]$	2	1
12	$[4 * 25; 2^{15}]$	2	2
12	$[4 * 22; 2^5]$	2	3
12	$[5*17;2^9]$	2	0
12	$[5*18,1;2^2]$	2	1

Theorem 3 If $4 \le d \le 9$, $P_2[D] = (d-2)(2d-5)$ and $g = \frac{d^2-3d+2}{2}$ then the pair (S, D) becomes a pair of \mathbf{P}^2 and a nonsingular plane curve or the type is $[\frac{d+1}{2} * (d-1); 1]$ or $[4 * 9; 2^3]$ or $[4 * 13; 2^8]$.

Table 5: types of pairs where $P_2[D] = (d-2)(2d-5)$ with $13 \le d \le 15$ and $\delta = 0$

· ·			~
d	$[\sigma * e , B; multiplicities]$	ν_1	δ
13	$[4 * 39; 2^{48}]$	2	0
13	$[5 * 21; 2^{14}]$	2	0
13	$[6*15;2^4]$	2	0
13	$[6*16;3^3]$	3	0
13	[7 * 12; 1]	1	0
14	$[4 * 48; 2^{63}]$	2	0
14	$[5 * 28, 1; 2^{20}]$	2	0
14	$[6*18;2^7]$	2	0
14	$[6*19; 3^3, 2^3]$	3	0
14	[7*18,1;3]	3	0
15	$[4 * 58; 2^{80}]$	2	0
15	$[5 * 33, 1; 2^{27}]$	2	0
15	$[6 * 22; 3^2, 2^8]$	3	0
15	$[6*23; 3^5, 2^4]$	3	0
15	$[6 * 24; 3^8]$	3	0
15	$[7*17;3,2^2]$	3	0
15	[8 * 14; 1]	1	0

4 D^2 and genus

Next, suppose that $D^2 = d^2$ and $g \leq \frac{(d-1)(d-2)}{2}$. So in this case $\delta_{(-)}$ is defined to be $\frac{(d-1)(d-2)}{2} - g \geq 0$. Thus $2g = d^2 - 3d + 2 - 2\delta_{(-)}$. Assume that (S, D) is *not* birationally equivalent to $(\mathbf{P}^2, C_d), C_d$ being a

Assume that (S, D) is not birationally equivalent to $(\mathbf{P}^2, C_d), C_d$ being a nonsingular curve. Thus (S, D) is obtained from a # minimal model (Σ_B, C) of type $[\sigma * e, B; \nu_1, \nu_1, \cdots, \nu_r]$ by shortest resolution of singularities of C. Then

$$Z^{2} = K_{S}^{2} - D^{2} + 4\overline{g}$$

= 8 - r - d^{2} + 2d(d - 3) - 4\delta_{(-)}
= (d - 3)^{2} - 1 - r - 4\delta_{(-)}.

Hence,

$$Z^{2} = (d-3)^{2} - 1 - r - 4\delta_{(-)}.$$
(6)

The genus formula implies

$$(\sigma - 1)(\tilde{B} - 2) = 2g + 2X.$$
(7)

Moreover,

$$\sigma \tilde{B} = D^2 + W,\tag{8}$$

where

$$W = \sum_{j=2}^{\nu_1} j^2 t_j.$$

Multiplying (7) by σ , we obtain

$$(\sigma - 1)(\sigma \tilde{B} - 2\sigma) = 2\sigma g + 2\sigma X,$$

and by (8),

$$(\sigma - 1)(\sigma \tilde{B} - 2\sigma)$$

= $(\sigma - 1)(D^2 + W) - 2\sigma(\sigma - 1)$
= $2\sigma g + 2\sigma X$
= $(d^2 - 3d + 2)\sigma - 2\delta_{(-)}\sigma + 2\sigma X.$

So,

$$(\sigma - 1)D^2 + (\sigma - 1)W - 2\sigma X - 2\sigma(\sigma - 1)$$

= $(d^2 - 3d + 2)\sigma - 2\delta_{(-)}\sigma$.

Thus, defining Θ_D to be $(\sigma - 1)W - 2\sigma X$, we have

$$\Theta_D = \sum_{j=2}^{\nu_1} \{ (\sigma - 1)j^2 - (\sigma - 1)j(j - 1) \} t_j$$
$$= \sum_{j=2}^{\nu_1} j(\sigma - j)t_j.$$

On the other hand,

$$- (\sigma - 1)d^{2} + (d^{2} - 3d + 2)\sigma + 2(\sigma - 1)(\sigma - 2)$$

= $d^{2} - 3\sigma d + 2\sigma^{2}$
= $(d - \sigma)(d - 2\sigma)$.

Thus we find the following formula:

$$(d - \sigma)(d - 2\sigma) = 2\sigma\delta_{(-)} + \Theta_D.$$
(9)

In particular, $(d - \sigma)(d - 2\sigma) \ge 0$ implies

$$d \le \sigma \text{ or } d \ge 2\sigma. \tag{10}$$

4.1 Estimate of d

We shall show that $d \ge 2\sigma$. Actually, by Lemma 2, we obtain either (1) $2\sigma \overline{g} \ge (\sigma - 2)D^2$ or (2) B = 1 and $eZ^2 \ge 2\overline{g}(e - 3)$.

In the first case,

$$2\sigma \overline{g} = \sigma (d^2 - 3d - 2\delta_{(-)}) \ge (\sigma - 2)D^2 = (\sigma - 2)d^2.$$

Hence, $\overline{g} \geq 0$ and $d(2d - 3\sigma) \geq 2\sigma \overline{g} \geq 0$. Thus,

$$\sigma \le \frac{2d}{3} < d.$$

We can check $d \ge \sigma$ in the second case, too. Hence by (10), $d \ge 2\sigma$.

If r = 0 and $\delta_{(-)} = 0$, then $d = 2\sigma$. Since $D^2 = d^2$, it follows that $\tilde{B} = 2d$. Hence, the type becomes $\left[\frac{d}{2} * e, B; 1\right]$ such that $e = d + \frac{dB}{4}$. These types are similar to the type $\left[\frac{d}{2} * 2d; 1\right]$. Thus , if d is even, the types are $\left[\frac{d}{2} * 2d; 1\right]$ and their similar ones.

Define k to be $d-2\sigma$. Then $d = 2\sigma + k$. We suppose that k > 0. Substituting $d = 2\sigma + k$, the formula (9) becomes

$$k(\sigma + k) = 2\sigma\delta_{(-)} + \Theta_D.$$

If r > 0 then $k(\sigma + k) \ge (k+1)(\sigma - k - 1)$. Thus,

$$\sigma \le 2k^2 + 2k + 1.$$

For k = 1, 2, 3, we have the following tables.

Table 6: types in the case of $D^2 = d^2$ with k = 1

d	$[\sigma * e , B; multiplicities]$	ν_1	$\delta_{(-)}$
11	[5*15,1;2]	2	0

d	$[\sigma * e , B; multiplicities]$	ν_1	$\delta_{(-)}$
10	$[4 * 14; 2^3]$	2	0
10	[4 * 13; 2]	2	1
14	$[6*17;2^2]$	2	0
22	[10 * 25; 4]	4	0
28	[13 * 37, 1; 3]	3	0

Table 7: types in the case of $D^2 = d^2$ with k = 2

 $[\sigma \ast e \ , B; multiplicities]$ d $\delta_{(-)}$ ν_1 $\mathbf{2}$ [9 * 25; 3][9 * 29, 1; 1] $\mathbf{2}$ [11 * 29; 3, 2][13 * 39, 1; 2][15 * 45, 1; 6] $\mathbf{6}$ $\frac{2}{5}$ $[17 * 49, 1; 2^2]$ [17 * 41; 5][25 * 69, 1; 4]

Table 8: types in the case of $D^2 = d^2$ with k = 3

4.2Converse

We shall show the converse.

Proposition 3 Suppose that nonnegative integers $d \ge 4, \sigma, \delta, t_j (j = 2, 3, \cdots)$ satisfy that

$$(d-\sigma)(d-2\sigma) = 2\sigma\delta_{(-)} + \Theta_D,$$

where

$$\Theta_D = \sum_{j=2}^{\nu_1} j(\sigma - j) t_j.$$

Assume that there exists a minimal pair (S, D) obtained from a # minimal model (Σ_B, C) with type $[\sigma * e, B; \nu_1, \nu_1, \cdots, \nu_r]$ which corresponds to integers $d, \sigma, \Delta, t_j (j = 2, 3, \cdots)$. Then $D^2 = d^2$.

To verify this, letting $X = \sum_{j=2}^{\nu_1} \frac{j(j-1)}{2} t_j$ and $W = \sum_{j=2}^{\nu_1} j^2 t_j$, we obtain $\Theta_D = (\sigma - 1)W - 2X\sigma$ and then

$$(d-\sigma)(d-2\sigma) \equiv d^2 - 3d + 2 \mod (\sigma - 1).$$

Furthermore,

$$2\sigma\delta_{(-)} + \Theta_D \equiv 2\delta_{(-)} - 2X\sigma \mod (\sigma - 1).$$

By hypothesis,

$$0 = d^2 - 3d + 2 - (2\sigma\delta_{(-)} + \Theta_D)$$

= $d^2 - 3d + 2 - (2\delta_{(-)} - 2X\sigma) \mod (\sigma - 1).$

Consequently, $\frac{d^2 - 3d + 2 - 2\delta_{(-)} + 2X}{\sigma - 1}$ is an integer. Then define $\tilde{B}_0 = 2 + \frac{d^2 - 3d + 2 - 2\delta_{(-)} + 2X}{\sigma - 1}.$

By hypothesis, there exists a minimal pair
$$(S, D)$$
 obtained from a $\#$ minimal model (Σ_B, C) with type $[\sigma * e, B; \nu_1, \nu_1, \cdots, \nu_r]$ such that $\tilde{B} = \tilde{B}_0$ and the sequence of multiplicities ν_2, ν_3, \cdots corresponds to the sequence of t_2, t_3, \cdots .

By the condition , the genus g coincides with $d^2 - 3d + 2 - 2\delta_{(-)}$.

Next, we shall prove that $D^2 = d^2$. Replacing $D^2 = d^2$ by $D^2 = \varepsilon + d^2$, by the same argument as before, we obtain

$$(d-\sigma)(d-2\sigma) = 2\sigma\delta_{(-)} + \Theta_D + (\sigma-1)\varepsilon.$$
(11)

Since the equality

1

$$(d-\sigma)(d-2\sigma) = 2\sigma\delta_{(-)} + \Theta_D$$

was assumed, it follows that $\varepsilon = 0$. Hence, $D^2 = d^2$.

4.3Examples

If $\sigma = 3$ then $\nu_1 = 1$ and the formula becomes $(d-3)(d-6) = 6\delta_{(-)}$. Hence,

 $d \equiv 0 \mod 3.$

By [3 * e, B; 1] we denote the type. Then $D^2 = 3\tilde{B}$ and therefore, $\tilde{B} = \frac{d^2}{3}$.

When $d = 3\mu$, we have $\tilde{B} = 3\mu^2$ and $\delta = \frac{3(\mu-1)(\mu-2)}{2}$. Hence, if d is even, then put B = 0 and thus $f = \frac{3\mu^2}{2}$. The type is $[3 * \frac{3\mu^2}{2}; 1]$ (or its similar ones). If d is odd, then put B = 1 and thus $f = \frac{3\mu^2-3}{2}$. The type is $[3 * \frac{3\mu^2+3}{2}, 1; 1]$.

Suppose that $\delta_{(-)} = 0$. Then d = 6 and so by putting B = 0, we get e = 6and the type becomes [3 * 6; 1].

In general, if d = 9, then $B = 1, e = 15, \delta_{(-)} = 3$ and so the type is [3 * 15, 1; 1].

If d = 12, then $B = 0, e = 24, \delta_{(-)} = 9$ and so the type is [3 * 24; 1].

Suppose that r = 0 and $\delta_{(-)} = 0$. Then by the formula, $d = 2\sigma$. In particular, d is even. Hence, $\sigma = \frac{d}{2}.$ By $D^2 = \sigma \tilde{B} = d^2$, we obtain

$$\tilde{B} = 2d, \quad \tilde{B} = \frac{d}{2}B + 2f.$$

When B = 0, we have f = e = d and the type is $\left[\frac{d}{2} * d; 1\right]$. In general, the type becomes $\left[\frac{d}{2} * d; 1\right]$ and its similar ones.

Using computer, one has the following tables of types where $5 \le d \le 12$.

Observing these formulas, we obtain the next proposition.

Theorem 4 Suppose that $D^2 = d^2$ and $g = \frac{(d-1)(d-2)}{2}$. Then whenever d = 4, 5, 7, 9, the pair is birationally equivalent to (\mathbf{P}^2, C_d) , C_d being a nonsingular curve.

Z^2 and D^2 5

Suppose that $Z^2 = (d-3)^2$ and $D^2 \ge d^2$ for some $d \ge 4$. Then Δ is defined to be $D^2 - d^2$, which is nonnegative. $g - \frac{(d-1)(d-2)}{2}$ is denoted by δ , which will be proved to be positive.

Assume that (S, D) is not birationally equivalent to $(\mathbf{P}^2, C_d), C_d$ being a nonsingular curve. Thus (S, D) is obtained from a # minimal model (Σ_B, C) of type $[\sigma * e, B; \nu_1, \nu_1, \cdots, \nu_r]$ by shortest resolution of singularities of C. Then from

$$Z^2 = K_S^2 - D^2 + 4\overline{g},$$

it follows that

$$(d-3)^2 = Z^2 = 8 - r - (d^2 + \Delta) + 2d(d-3) + 4\delta$$

d	$[\sigma * e , B;$ multiplicities]	ν_1	$\delta_{(-)}$
6	[3 * 6; 1]	1	0
8	[4 * 8; 1]	1	0
9	[3*15,1;1]	1	3
10	$[4 * 14; 2^3]$	2	0
10	[4 * 21; 2]	2	1
10	[5 * 10; 1]	1	0
11	[5*15,1;2]	2	0
12	[3 * 24; 1]	1	9
12	$[4 * 22; 2^8]$	2	0
12	$[4 * 22; 2^8]$	2	0
12	$[4 * 29; 2^6]$	2	1
12	$[4 * 36; 2^4]$	2	2
12	$[4 * 43; 2^2]$	2	3
12	[4 * 50; 1]	1	4
12	[6 * 12; 1]	1	0

Table 9: types in the case of $D^2=d^2$ with $4\leq d\leq 13$

Hence,

$$4\delta = 1 + r + \Delta. \tag{12}$$

Multiplying (3) by σ , we obtain

$$\sigma Z^2 + \sigma U = (\sigma - 2)(\sigma \tilde{B} - 4\sigma)$$

= $(\sigma - 2)(D^2 + W) - 4(\sigma - 2)\sigma$
= $(\sigma - 2)d^2 + (\sigma - 2)\Delta + (\sigma - 2)W - 4(\sigma - 2)\sigma$.

On the other hand,

$$\sigma Z^2 + \sigma U = \sigma (d-3)^2 + \sigma U$$

= $(\sigma - 2)d^2 + (\sigma - 2)\Delta + (\sigma - 2)W - 4(\sigma - 2)\sigma$,

and so

$$\sigma(d-3)^2 - (\sigma-2)d^2 + 4(\sigma-2)\sigma = (\sigma-2)\Delta + (\sigma-2)W - \sigma U.$$

Defining

$$\Theta_{DZ} = (\sigma - 2)W - \sigma U,$$

we have

d	$[\sigma * e, B; Type]$	ν_1	$\delta_{(-)}$
13	$[5 * 21, 1; 2^4]$	2	0
14	$[4 * 32; 2^{15}]$	2	0
14	$[5 * 22; 2^6]$	2	0
14	$[6*17;2^2]$	2	0
15	$[6 * 21; 3^3]$	3	0
16	$[4 * 44; 2^{24}]$	2	0
16	$[5 * 30; 2^{11}]$	2	0
16	$[6 * 23; 2^5]$	2	0
17	$[5 * 37, 1; 2^{14}]$	2	0
17	$[7 * 25, 1; 2^3]$	2	0
18	$[4*58;2^{35}]$	2	0
18	$[6 * 30; 2^9]$	2	0
18	$[6 * 33; 3^8]$	3	0
18	$[7 * 25; 3^2, 2^2]$	3	0
19	$[5*47, 1; 2^{21}]$	2	0
19	$[6 * 35; 3^3, 2^8]$	3	0
19	$[7 * 31, 1; 2^6]$	2	0
19	$[7 * 29; 3^5]$	3	0
20	$[4*74;2^{48}]$	2	0
20	$[5 * 50; 2^{25}]$	2	0
20	$[6 * 38; 2^{14}]$	2	0
20	$[6*41; 3^8, 2^5]$	3	0
20	$[7 * 32; 3^4, 2^3]$	3	0
20	$[8 * 26; 2^4]$	2	0
20	$[8 * 28; 4^3]$	4	0
21	$[6*45; 3^7, 2^9]$	3	0
21	$[6*48;3^{15}]$	3	0
21	$[7*39, 1; 3^4, 2^5]$	3	0
21	$[9 * 30, 1; 3^2]$	3	0

Table 10: types in the case of $D^2=d^2$ with $13\leq d\leq 18$ where $r>0, \delta_{(-)}=0$

$$\Theta_{DZ} = \sum_{j=2}^{\nu_1} (-2j^2 + 2\sigma j - \sigma) t_j \ge \sum_{j=2}^{\nu_1} 2j(j-1)t_j.$$

Thus, noting that

$$\sigma(d-3)^2 - (\sigma-2)d^2 + 4(\sigma-2)\sigma = 2d^2 - 6\sigma d + (4\sigma+1)\sigma,$$

we find the next formula:

$$2d^2 - 6\sigma d + (4\sigma + 1)\sigma = (\sigma - 2)\Delta + \Theta_{DZ},$$
(13)

where $\Theta_{DZ} = \sum_{j=2}^{\nu_1} (-2j^2 + 2\sigma j - \sigma) t_j.$

Claim: If $\Theta_{DZ} = 0$ then $\Delta \geq 3$.

Actually, $\Theta_{DZ} = 0$ implies r = 0. But, from $4\delta = 1 + r + \Delta = 1 + \Delta$, it follows that $\Delta \ge 3$.

By the Claim, $(\sigma - 2)\Delta + \Theta_{DZ} > 0$ and so

 $2d^2 - 6\sigma d + (4\sigma + 1)\sigma \ge 1.$

Moreover,

$$2d^2 - 6\sigma d + (4\sigma + 1)\sigma - \frac{1}{2} = \frac{(2d - 4\sigma + 1)(2d - 2\sigma - 1)}{2} \geq \frac{1}{2}$$

Hence,

$$(2d - 4\sigma + 1)(2d - 2\sigma - 1) > 0.$$
⁽¹⁴⁾

Therefore, we have either $2d \leq 2\sigma + 1$ or $2d \geq 4\sigma - 1$ and so we obtain either 1) $\sigma \geq d$ or 2) $d \geq 2\sigma$.

5.1 Estimate of d

We shall show that $d \geq 2\sigma$.

Actually, by Lemma 2 , we have either (1) $\sigma Z^2 \ge 2(\sigma-2)\overline{g}$ or (2) B=1 and $eZ^2 \ge 2(e-3)\overline{g}$.

In the first case,

$$\sigma(d-3)^2 = \sigma Z^2 \ge 2(\sigma-2)\overline{g} = (\sigma-2)(d(d-3)+2\delta) \ge (\sigma-2)d(d-3).$$

Therefore, $2d \ge 3\sigma$, and so $\sigma \le \frac{2d}{3}$; hence by (14), we obtain $d \ge 2\sigma$.

In the second case, it follows that

$$e(d-3)^2 = eZ^2 \ge 2(e-3)\overline{g} = (e-3)d(d-3).$$

Hence, $e(d-3) \ge (e-3)d$, which implies that $d \ge e = f + \sigma > \sigma$. Therefore,

 $\sigma \leq d-1.$

Hence, by (14), we obtain

$$2d - 4\sigma + 1 > 0; \quad d \ge 2\sigma.$$

Suppose that $d = 2\sigma$. Then the formula (12) turns out to be

$$2d^2 - 6\sigma d + (4\sigma + 1)\sigma = \sigma = (\sigma - 2)\Delta + \Theta_{DZ}$$

Since

$$\sigma = (\sigma - 2)\Delta + \Theta_{DZ} \ge \Theta_{DZ} \ge (2\nu_1 - 1)\sigma - 2\nu_1^2$$

it follows that

$$\nu_1^2 \ge 2(\nu_1 - 1)\nu_1.$$

Hence, $2 \ge \nu_1$.

Assume that
$$\nu_1 = 2$$
. Then $\sigma = 4, d = 8; \Theta_{DZ} = 4, t_2 = 1, \Delta = 0$. Hence
$$D^2 = \sigma \tilde{B} - 4 = d^2 = 64.$$

Thus, $\tilde{B} = 17$ and $17 = \tilde{B} = 2f + 4B$, which is a contradiction. Assume that $\nu_1 = 1$. Then $r = 0, 4\delta = 1 + \Delta \ge 4$ and

$$\sigma = (\sigma - 2)\Delta \geq 3(\sigma - 2)$$

Hence, $\sigma = 3, d = 6, e = 8, \Delta = 3$, which imply that the type is [3 * 8, 1; 1].

Define k to be $d - 2\sigma$. Replacing d by $2\sigma + k$, the formula (13) turns out to be

$$2k^2 + (2k+1)\sigma = (\sigma - 2)\Delta + \Theta_{DZ}.$$
(15)

Since

$$2k^{2} + (2k+1)\sigma \ge (-2j^{2} + 2\sigma j - \sigma), j = k+2$$

it follows that $\sigma \leq 2(k^2+2k+2).$ Thus , we obtain the following tables using computer.

By observing these tables, we obtain the following result.

Proposition 4 If $D^2 = d^2$ and $Z^2 = (d-3)^2$ and (S,D) is not birationally equivalent to pairs of the projective plane and non-singular curves, then

 $d \ge 4\nu_1 + 3$

except for the type $[6 * 25, 1; 3^5]$.

 $[\sigma * e, B; multiplicities]$ dΔ ν_1 21 [10 * 27, 1; 3]3 0 $[4 * 16; 2^7]$ $\mathbf{2}$ 100 $[7 * 23, 1; 3, 2^2]$ 163 0 $[8\ast21;2^3]$ $\mathbf{2}$ 180 42[20 * 54, 1; 4]40 $[6*25,1;3^5]$ 153 0 $[9*26;3^3]$ $[9*31,1;4^2,2]$ 3 210 2140 25 $[11 * 35, 1; 4, 2^2]$ 4 0 $[13 * 33; 3, 2^2]$ 3 290 [18 * 53, 1; 9]90 39 $\mathbf{2}$ $[21 * 59, 1; 2^3]$ 0 45[34 * 91, 1; 5]50 71

Table 11: types in the case of $D^2 = d^2$ and $Z^2 = (d-3)^2$ with k = 1, 2, 3

5.2 Converse

By the same argument as in the previous section, we can show the converse.

Proposition 5 Suppose that nonnegative integers $d, \sigma, \Delta, t_j (j = 2, 3, \cdots)$ satisfy that

$$2d^2 - 6\sigma d + (4\sigma + 1)\sigma = (\sigma - 2)\Delta + \Theta_{DZ}$$
⁽¹⁶⁾

and that $\Delta + 1 + r$ is even.

Assume that there exists a minimal pair (S, D) obtained from a # minimal model (Σ_B, C) with type $[\sigma * e, B; \nu_1, \nu_1, \cdots, \nu_r]$ which corresponds to integers $d, \sigma, \Delta, t_j (j = 2, 3, \cdots)$. Then $Z^2 = (d-3)^2$.

Proof. By (14),

$$2d^2 - 6\sigma d + (4\sigma + 1)\sigma \equiv 2d^2 + \sigma \mod 2\sigma.$$

Hence,

$$2d^2 + \sigma \equiv (\sigma - 2)\Delta + (\sigma - 2)W - \sigma U \mod 2\sigma.$$

Thus

$$2(d^2 + \Delta + W) \equiv \sigma(\Delta + W - U - 1) \mod 2\sigma.$$

By the way,

$$W - U = \sum_{j=2}^{\nu_1} \{j^2 - (j-1)^2\} t_j$$

 $W - U - r = \sum_{j=2}^{\nu_1} \{j^2 - (j-1)^2 - 1\} t_j \equiv 0 \mod 2.$

Therefore,

$$\sigma(\Delta + W - U - 1) = \sigma(\Delta + W - U - r) + \sigma(r - 1)$$
$$\equiv \sigma(\Delta + r - 1) \mod 2\sigma.$$

However, since $\Delta + 1 + r$ is even, it follows that

$$\sigma(\Delta + r - 1) \equiv 0 \bmod 2\sigma.$$

So,

$$\sigma(\Delta + W - U - 1) \equiv 0 \mod 2\sigma. \tag{17}$$

Therefore,

$$2(d^2 + \Delta + W) \equiv 0 \mod 2\sigma$$

which implies that $\frac{d^2 + \Delta + W}{\sigma}$ is an integer, which we denote by \tilde{B}_0 . Thus,

$$\sigma \tilde{B}_0 = d^2 + \Delta + W. \tag{18}$$

As in the previous sections, assume that there exists a minimal pair (S, D) obtained from a # minimal model (Σ_B, C) with type $[\sigma * e, B; \nu_1, \nu_1, \cdots, \nu_r]$ of which \tilde{B} equals \tilde{B}_0 and the sequence of multiplicities ν_2, ν_3, \cdots corresponds to the sequence of t_2, t_3, \cdots . Then

$$\sigma \tilde{B} = D^2 + W, \sigma \tilde{B} = \sigma \tilde{B_0} = d^2 + \Delta + W.$$

Defining ε to be $Z^2 - (d-3)^2$, we have

$$(\sigma - 2)(\tilde{B} - 4) = (d - 3)^2 + \varepsilon + U.$$

Multiplying the above formula by σ , we obtain

$$(\sigma - 2)(\sigma \tilde{B} - 4\sigma) = \sigma (d - 3)^2 + \sigma \varepsilon + \sigma U$$

and

$$(\sigma - 2)(\sigma \tilde{B} - 4\sigma) = (\sigma - 2)(D^2 + W) - 4\sigma(\sigma - 2)$$
$$= (\sigma - 2)(d^2 + \Delta + W) - 4\sigma(\sigma - 2).$$

27

and

Therefore,

$$(\sigma - 2)(d^2 + \Delta + W) - 4\sigma(\sigma - 2) = \sigma((d - 3)^2 + \varepsilon) + \sigma U.$$

Hence,

$$\sigma\varepsilon = 2d^2 - 6\sigma d + (4\sigma + 1)\sigma - (\sigma - 2)\Delta - \Theta_{DZ}.$$

However, the formula (16) implies that the right hand side vanishes. Hence,

 $\sigma \varepsilon = 0; \quad \varepsilon = 0.$

Therefore, $Z^2 = (d-3)^2$ has been established.

5.3 Numerical examples

d	$[\sigma * e , B; multiplicities]$	Δ	ν_1
10	$[4*16;2^7]$	0	2
14	$[4 * 40; 2^{31}]$	0	2
14	$[5 * 24; 2^{11}]$	0	2
15	$[5*31,1;2^{15}]$	0	2
16	$[7 * 23, 1; 3, 2^2]$	0	3
17	$[6 * 29; 3^3, 2^8]$	0	3
18	$[4*76;2^{71}]$	0	2
18	$[6 * 32; 2^{15}]$	0	2
18	$[7 * 29, 1; 3, 2^6]$	0	3
18	$[8 * 21; 2^3]$	0	2
20	$[6*41;2^{23}]$	0	2
20	$[7*37, 1; 3^5, 2^6]$	0	3
21	$[5*67, 1; 2^{51}]$	0	2
21	$[6*47; 3^3, 2^{24}]$	0	3
21	$[6*54;3^{23}]$	0	3
21	$[7 * 40, 1; 3^2, 2^{13}]$	0	3
21	$[8*31;4,3^3,2^3]$	0	4
21	$[9 * 26; 3^3]$	0	3
21	$[9*31, 1; 4^2, 2]$	0	4

Table 12: types in the case of $D^2 = d^2$ and $Z^2 = (d-3)^2$ with $4 \le d \le 21$

Observing these tables, we get the next result.

Theorem 5 (H.Yanaba) Suppose that $Z^2 = (d-3)^2$ and $D^2 = d^2$. If d = 4, 5, 7, 8, 9, 11, 12, 13, 19, then (S, D) is birationally equivalent to a pair of \mathbf{P}^2 and a nonsingular curve.

6 $P_{3,1}[D]$ and genus

Suppose that $P_{3,1}[D] = \frac{(d-7)(d-8)}{2}$ for $d \ge 7$, and $\delta = g - \frac{(d-1)(d-2)}{2} \ge 0$, g being the genus of D. Then assume that a minimal pair (S, D) is *not* birationally equivalent to $(\mathbf{P}^2, C_d), C_d$ being a nonsingular curve. Then (S, D) is obtained from a # minimal model (Σ_B, C) of type $[\sigma * e, B; \nu_1, \nu_1, \cdots, \nu_r]$ by shortest resolution of singularities of C. By the same argument as before,

$$(\sigma - 1)(B - 2) = 2g + 2X.$$
(19)

Moreover, assuming $\sigma \geq 6$, we have $2P_{3,1}[D] - 2 = (3Z - 2D)(2Z - D)$. Thus

$$(\sigma - 5)(\tilde{B} - 10) - 2 = (3Z - 2D)(2Z - D) + 2Y.$$
 (20)

Here, $Y = \sum_{j=2}^{\nu_1} \frac{(j-2)(j-3)}{2} t_j$. Then

$$(\sigma - 5)(\tilde{B} - 10) = (d - 7)(d - 8) + 2Y.$$
(21)

Multiplying (21) by $\sigma - 1$, we obtain

$$(\sigma - 5)(\sigma - 1)(\tilde{B} - 2) - 8(\sigma - 1)(\sigma - 5) = (\sigma - 1)(d - 7)(d - 8) + 2(\sigma - 1)Y.$$

From hypothesis, it follows that

$$(\sigma - 5)(\sigma - 1)(\tilde{B} - 2) = (\sigma - 5)(d^2 - 3d + 2) + 2\delta(\sigma - 5) + 2X(\sigma - 5).$$

Hence, defining Θ_{31} to be $(\sigma - 5)X - (\sigma - 1)Y$, we have

$$\Theta_{31} = \sum_{j=2}^{\nu_1} \{\sigma(2j-3) - 2j^2 + 3\} t_j \ge (\sigma - 5)t_2 + \sum_{j=3}^{\nu_1} \{2j(j-3) + 3\} t_j.$$

Note that $\Theta_{31} = 0$ implies r = 0.

Moreover,

$$(\sigma - 1)(d - 7)(d - 8) - (\sigma - 5)(d^2 - 3d + 2) + 8(\sigma - 1)(\sigma - 5)$$

= $2d^2 - 6\sigma d + 4\sigma^2 + 3\sigma - 3.$

Consequently,

$$2d^2 - 6\sigma d + 4\sigma^2 + 3\sigma - 3 = \delta(\sigma - 5) + \Theta_{31}.$$
 (22)

$$2d^2 - 6\sigma d + 4\sigma^2 + 3\sigma - 3 \ge 0.$$

However,

$$2d^{2} - 6\sigma d + 4\sigma^{2} + 3\sigma - 3$$

= $2d^{2} - 6\sigma d + 4\sigma^{2} + 3\sigma - \frac{9}{2} - \frac{1}{2}$
= $\frac{(2d - 4\sigma + 3)(2d - 2\sigma - 3)}{2} - \frac{1}{2} \ge 0$

Hence, $(2d - 4\sigma + 3)(2d - 2\sigma - 3) > 0$. Therefore, we have either $\sigma > \frac{2d-3}{2}$ or $\sigma < \frac{2d+3}{4}$. From $\sigma > \frac{2d-3}{2}$, it follows that $d \le \sigma + 1$. Similarly, $\sigma < \frac{2d+3}{4}$ implies $d \ge 2\sigma - 1$.

Estimate of d6.1

We shall verify that if $d \leq \sigma + 1$ then $d = \sigma + 1$ and the type is either 1) $[6*8,1;2^r], r \le 5, d = 7 \text{ or } 2)$ $[7*9,1;2^r], r \le 6, d = 8$. Otherwise, $d \ge 2\sigma$.

Actually, assuming $d \leq \sigma + 1$, by Lemma 1 we have either (1) $|\sigma Z - (\sigma - \sigma)| = 0$ $2|D| \neq \emptyset$ or (2) $B = 1, 2f < \sigma$ and $|eZ - (e-3)D| \neq \emptyset$.

In the first case, since $\sigma \geq 4$, it follows that 2Z - D is nef. Hence,

$$(\sigma Z - (\sigma - 2)D) \cdot (2Z - D) \ge 0$$

and

$$2\sigma Z^{2} + (\sigma - 2)D^{2} + 2(4 - 3\sigma)\overline{g} \ge 0.$$
(23)

By hypothesis,

$$6Z^{2} + 2D^{2} - 14\overline{g} = (d-7)(d-8).$$
(24)

Eliminating D^2 from these two formulas, we obtain

$$(6-\sigma)Z^{2} + \frac{(\sigma-2)(d-7)(d-8)}{2} \ge (6-\sigma)\overline{g}.$$

Hence,

$$\frac{(\sigma-2)(d-7)(d-8)}{2} \ge (\sigma-6)(Z^2 - \overline{g}).$$

But by Lemma 2,

$$\sigma Z^2 \ge 2(\sigma - 2)\overline{g}$$

and so

$$Z^2 \ge 2(1 - \frac{2}{\sigma})\overline{g}$$

So,

Therefore,

$$(\sigma - 6)(Z^2 - \overline{g}) \ge (\sigma - 6)(1 - \frac{4}{\sigma})\overline{g}.$$

Hence,

$$\sigma(\sigma - 2)(d - 7)(d - 8) \ge (\sigma - 4)(\sigma - 6)d(d - 3).$$
(25)

Defining a quadratic equation F(x) by

$$\sigma(\sigma - 2)(x - 7)(x - 8) - (\sigma - 4)(\sigma - 6)x(x - 3),$$

we shall verify that if $F(d) \ge 0$ then $d \ge \sigma + 1$.

This follows from observing Figure 1 which is the figure of curves defined by x(x-2)(y-7)(y-8) = (x-4)(x-6)y(y-3), x = 6, y = 6, y = x+1.

If $d = \sigma + 1$ then the formula (23) induces

$$(d-1)(d-3)(d-7)(d-8) \ge (d-5)(d-7)d(d-3)$$

which implies either d = 7 or

$$(d-1)(d-8) \ge d(d-5).$$

Then $-9d + 8 \ge -5d$; $2 \ge d$. But this is impossible.

If d = 7 then $\sigma = 6$ and by (21) we have $\tilde{B} = 10$. Hence, the type becomes $[6 * 8, 1; 2^r]$.

In the second case, since $|eZ - (e-3)D| \neq \emptyset$ and 2Z - D is nef for $\sigma \ge 4$, it follows that

$$(eZ - (e-3)D) \cdot (2Z - D) \ge 0.$$

Therefore,

$$2eZ^2 + (e-3)D^2 + 2(6-3e)\overline{g} \ge 0.$$
(26)

Recalling (24), we obtain

$$(9-e)Z^2 + \frac{(d-7)(d-8)(e-3)}{2} \ge (9-e)\overline{g}.$$

Hence,

$$\frac{(d-7)(d-8)(e-3)}{2} \ge (e-9)(Z^2 - \overline{g}).$$
(27)

Figure 1: x(x-2)(y-7)(y-8) = (x-4)(x-6)y(y-3), x = 6, y = 6, y = x+1

But by Lemma2,

$$Z^2 - \overline{g} \geq \frac{e-6}{e}\overline{g} \geq \frac{(e-6)d(d-3)}{2e}$$

Combining this with (26), we obtain

$$e(e-3)(d-7)(d-8) \ge (e-6)(e-9)d(d-3).$$
(28)

Noting that $d \ge 8$ and $e \ge 9$, we have the next figure of curves.

Figure 2: x(x-3)(y-7)(y-8) = (x-6)(x-9)y(y-3), x = 9, y = 8, y = x-1

Observing Figure 2, we get $d \ge e - 1$. Since $e \ge \sigma + \nu_1$, we get $d \ge e - 1 = f + \sigma - 1 \ge f + \sigma - 1 \ge \sigma + \nu_1 - 1.$ Suppose that $d = \sigma + 1$. Then d = e - 1 and by (27) ,we obtain

$$e(e-3)(e-8)(e-9) \ge (e-6)(e-9)(e-1)(e-4).$$

Hence, either e = 9 or

$$e(e-3)(e-8) \ge (e-6)(e-1)(e-4).$$

This induces $24 \ge 10e$; hence, $2 \ge e$, which is a contradiction. Thus e = 9 and so $d = 8, \sigma = 7$ and the type is $[7 * 9, 1; 2^r]$, where $r \le 6, d = 7$.

Given d and σ , one can enumerate δ, t_2, t_3, \cdots satisfying the following formula:

$$(\sigma - 5)\delta + \Theta_{31} = (\sigma - 5)(\delta + t_2 + 3t_3) + (5\sigma - 29)t_4 + \cdots$$

Since $\delta + t_2 + 3t_3$ is invariant, if d and σ are given, then in the following table $t_3 = 0, \delta = 0$ is assumed. For example, if the type $[8*17;2^7]$ is given, other types such as $[8*17;3^{t_3},2^{t_2}]$ with $7 = \delta + t_2 + 3t_3$ exist.

6.2 Numerical examples

Table 13: types where $2P_{3,1}[D]=(d-7)(d-8), 2g=(d-1)(d-2)$ with $7\leq d\leq 19$ and $t_3=0, \delta=0$

d	$[\sigma * e , B; multiplicities]$	ν_1	δ
7	$[6*8;2^5]$	2	0
8	$[7*9;2^6]$	2	0
11	$[6*11;2^5]$	2	0
12	$[6*15;2^{15}]$	2	0
13	$[6 * 20; 2^{29}]$	2	0
13	$[7*16, 1; 2^3]$	2	0
14	$[6*26;2^{47}]$	2	0
14	$[7 * 19, 1; 2^9]$	2	0
15	$[6 * 33; 2^{69}]$	2	0
15	$[7*19;2^{17}]$	2	0
16	$[6*41;2^{95}]$	2	0
16	$[7 * 23; 2^{27}]$	2	0
16	$[8*17;2^7]$	2	0
17	$[6*50;2^{125}]$	2	0
17	$[7*31,1;2^{39}]$	2	0
17	$[8 * 20; 2^{13}]$	2	0
17	$[8 * 21; 4^3, 2^2]$	4	0
18	$[6*60;2^{159}]$	2	0
18	$[7 * 36, 1; 2^{53}]$	2	0
18	$[8*24;4^2,2^{13}]$	4	0
18	$[8 * 25; 4^5, 2^2]$	4	0
18	$[9 * 19; 4, 2^2]$	4	0
19	$[6*71;2^{197}]$	2	0
19	$[7 * 38; 2^{69}]$	2	0
19	$[8 * 27; 2^{29}]$	2	0
19	$[8 * 28; 4^3, 2^{18}]$	4	0
19	$[8 * 29; 4^6, 2^7]$	4	0
19	$[9*26, 1; 2^{11}]$	2	0
19	$[9 * 22; 4^2, 2^3]$	4	0

Table 14: types where $2P_{3,1}[D] = (d-7)(d-8), 2g = (d-1)(d-2)$ with $20 \le d \le 21$, and $t_3 = 0, \delta = 0$

d	$[\sigma + c P_{\text{implicition}}]$		δ
	$[\sigma * e, B; multiplicities]$	ν_1	-
20	$[6*83;2^{239}]$	2	0
20	$[7*44;2^{87}]$	2	0
20	$[8*31;2^{39}]$	2	0
20	$[8 * 32; 4^3, 2^{28}]$	4	0
20	$[8 * 33; 4^6, 2^{17}]$	4	0
20	$[8 * 34; 4^9, 2^6]$	4	0
20	$[9 * 29, 1; 2^{17}]$	2	0
20	$[9 * 25; 4^2, 2^9]$	4	0
20	$[9 * 30, 1; 4^4, 2]$	4	0
21	$[6*96;2^{285}]$	2	0
21	$[7*54, 1; 2^{107}]$	2	0
21	$[8 * 36; 4^2, 2^{43}]$	4	0
21	$[8*37; 4^5, 2^{32}]$	4	0
21	$[8 * 38; 4^8, 2^{21}]$	4	0
21	$[8 * 39; 4^{11}, 2^{10}]$	4	0
21	$[9*28;4,2^{20}]$	4	0
21	$[9 * 33, 1; 4^3, 2^{12}]$	4	0
21	$[9 * 29; 4^5, 2^4]$	4	0
21	$\left[10*24;5,4,2\right]$	5	0

$P_{2,1}[D]$ and $P_{3,1}[D]$ $\mathbf{7}$

Suppose that a minimal pair (S, D) satisfies that $P_{2,1}[D] \geq \frac{(d-4)(d-5)}{2}$ and $P_{3,1}[D] = \frac{(d-7)(d-8)}{2}$ for d > 6 that is *not* birationally equivalent to $(\mathbf{P}^2, C_d), C_d$ being a nonsingular curve. Then (S, D) is obtained from a # minimal model (Σ_B, C) of type $[\sigma * e, B; \nu_1, \nu_1, \cdots, \nu_r]$ by shortest resolution of singularities of C. Then defining Δ_{21} to be $P_{2,1}[D] - \frac{(d-4)(d-5)}{2} \ge 0$,

$$(\sigma - 3)(\tilde{B} - 6) = (d - 4)(d - 5) + 2\Delta_{21} + 2V.$$
⁽²⁹⁾

Here, $V = \sum_{j=2}^{\nu_1} \frac{(j-2)(j-1)}{2} t_j$. Moreover,

$$(\sigma - 5)(\tilde{B} - 10) = (d - 7)(d - 8) + 2Y.$$
(30)

Here, $Y = \sum_{j=2}^{\nu_1} \frac{(j-2)(j-3)}{2} t_j$. Then multiplying (27) by $\sigma - 3$, we obtain

$$(\sigma - 3)(\sigma - 5)(\tilde{B} - 10) = (\sigma - 3)(d - 7)(d - 8) + 2(\sigma - 3)Y.$$
(31)

By (26),

$$\begin{aligned} (\sigma - 3)(\sigma - 5)(\tilde{B} - 10) \\ &= (\sigma - 3)(\sigma - 5)(\tilde{B} - 6) - 4(\sigma - 3)(\sigma - 5) \\ &= (\sigma - 5)((d - 4)(d - 5) + 2\Delta_{21} + 2V) + (\sigma - 5)\Delta_{21} - 4(\sigma - 3)(\sigma - 5). \end{aligned}$$

Hence,

$$(\sigma - 3)(d - 7)(d - 8) + 2(\sigma - 5)Y$$

= $(\sigma - 5)((d - 4)(d - 5) + 2V) + (\sigma - 5)\Delta_{21} - 4(\sigma - 3)(\sigma - 5).$

Therefore, defining Θ_{32} to be $(\sigma - 3)V - (\sigma - 5)Y$, we obtain

$$(d - \sigma - 2)(d + 2 - 2\sigma) = (\sigma - 5)\Delta_{21} + \Theta_{32}.$$
(32)

Here, $\Theta_{32} = \sum_{j=3}^{\nu_1} (j-2)(\sigma-j-2)t_j = (\sigma-5)t_3 + 2(\sigma-6)t_4 + \cdots$. Since $\Theta_{32} \ge 0$, it follows that

$$(d - \sigma - 2)(d + 2 - 2\sigma) \ge 0.$$

Thus either $d \leq \sigma + 2$ or $d \geq 2\sigma - 2$.

Note that if $(\sigma - 5)\Delta_{21} + \Theta_{32} = 0$ and $\sigma \ge 6$ then $\Delta_{21} = 0$ and $\nu_1 \le 2$. Moreover, in this case, we have two cases: $d = \sigma + 2$ or $d = 2\sigma - 2$.

If $\sigma = d - 2$, then the type becomes $[\sigma * (\sigma + 2), 1; 2^r]$.

If $\sigma = \frac{d+2}{2}$, then $d = 2\sigma - 2$ and from the formula

$$(\sigma - 3)(\tilde{B} - 6) = (d - 4)(d - 5) + 2V = 2(\sigma - 3)(2\sigma - 7)$$

it follows that $\tilde{B} = 4\sigma - 8$.

When B = 0, we have $f = 2\sigma - 4$. The type becomes $[\sigma * 2(\sigma - 2); 2^r]$.

When B = 1, we have $2f = 3\sigma - 8$. Then σ is even and the type becomes $[\sigma * \frac{5\sigma - 8}{2}, 1; 2^r]$.

7.1 Estimate of d

We shall verify that if $\sigma \ge d-2$, then $B = 1, f = 2, d = \sigma + 2$ and the type is $[(d-2) * d, 1; 2^r]$.

Actually,
$$P_{2,1}[D] = \frac{(d-4)(d-5)}{2}$$
 and $P_{3,1}[D] = \frac{(d-7)(d-8)}{2}$ imply

$$(2Z - D) \cdot Z = (d - 3)(d - 6), \quad (3Z - 2D) \cdot (2Z - D) = (d - 9)(d - 6).$$
 (33)

By Lemma 1, we have the following two cases.

case (1): $|\sigma Z - (\sigma - 2)D| \neq \emptyset$. In this case, from

$$\alpha Z + \beta (3Z - 2D) = \sigma Z - (\sigma - 2)D,$$

we obtain

$$\alpha = \frac{6-\sigma}{2}, \beta = \frac{\sigma-2}{2}.$$

Since 2Z - D is nef for $\sigma \ge 4$, it follows that

$$(\sigma Z - (\sigma - 2)D) \cdot (2Z - D) \ge 0.$$

Hence,

$$\begin{aligned} (\sigma Z - (\sigma - 2)D) \cdot (2Z - D) \\ &= (\alpha Z + \beta(3Z - 2D)) \cdot (2Z - D) \\ &= \alpha Z \cdot (2Z - D) + \beta(3Z - 2D) \cdot (2Z - D) \\ &= \alpha(d - 3)(d - 6) + \beta(d - 6)(d - 9) \\ &= \frac{6 - \sigma}{2}(d - 3)(d - 6) + \frac{\sigma - 2}{2}(d - 6)(d - 9) \\ &\ge 0. \end{aligned}$$

By d > 6, we obtain $2d - 3\sigma \ge 0$. Hence, $\sigma \le \frac{2d}{3}$.

By hypothesis, $\sigma \ge d-2$. Thus $\frac{2d}{3} \ge d-2$, which induces $d \le 6$. This contradicts the hypothesis that d > 6.

case (2): $B = 1, 2f < \sigma$ and $|eZ - (e - 3)D| \neq \emptyset$. Then solving the following equation:

$$\alpha Z + \beta (3Z - 2D) = eZ - (e - 3)D,$$

we obtain

$$\alpha = \frac{9-\sigma}{2}, \beta = \frac{e-3}{2}.$$

Since 2Z - D is nef for $\sigma \ge 4$, it follows that

$$(eZ - (e - 3)D) \cdot (2Z - D) \ge 0.$$

By the same argument as before, we conclude that $d \ge e$. But by hypothesis, $\sigma \ge d-2$.

On the other hand, $e = f + \sigma \ge \nu_1 + \sigma$. Thus $d \ge e \ge \nu_1 + \sigma$; thus $\sigma \ge d - 2 \ge \nu_1 + \sigma - 2$. Hence, $\nu_1 = 1, 2$.

If $\nu_1 = 1$ then $f \ge 2$ by # minimality and hence, $e - \sigma = 2$ and f = 2. The type becomes $[\sigma * (\sigma + 2), 1; 1]$. Contracting Δ_{∞} into a point, we have a singular plane curve with only one double point.

If $\nu_1 = 2$ then $e - \sigma = 2, f = 2$. In this case, The type becomes $[\sigma * (\sigma + 2), 1; 2^r]$. Contracting Δ_{∞} into a point, we have a singular plane curve with r + 1 double points.

Apart from this case , we have $d \ge 2\sigma - 1$.

7.2 Numerical examples

Table 15: types in which $P_{2,1}[D] \ge \frac{(d-4)(d-5)}{2}$ and $P_{3,1}[D] = \frac{(d-7)(d-8)}{2}$ with $10 \le d \le 21$ and $\Delta_{21} = t_2 = 0$

d	$[\sigma * e , B; multiplicities]$	ν_1
10	[6 * 8; 1]	1
11	$[6*11;3^3]$	3
12	$[6*15;3^8]$	3
12	[7 * 10; 1]	1
13	$[6 * 20; 3^{15}]$	3
13	$[7*16, 1; 3^2]$	3
14	$[6*26;3^{24}]$	3
14	$[7*19, 1; 3^5]$	3
14	[8 * 12; 1]	1
15	$[6 * 33; 3^{35}]$	3
15	$[7*19;3^9]$	3
16	$[6*41;3^{48}]$	3
16	$[7 * 23; 3^{14}]$	3
16	$[8*17; 3^4]$	3
16	$[8 * 18; 4^3]$	4
16	[9 * 14; 1]	1
17	$[6 * 50; 3^{63}]$	3
17	$[7*31, 1; 3^{20}]$	3
17	$[8 * 20; 3^7]$	3
17	$[8 * 21; 4^3, 3^3]$	4
17	[9 * 21, 1; 4]	4

Table 16: types in which $P_{2,1}[D] \ge \frac{(d-4)(d-5)}{2}$ and $P_{3,1}[D] = \frac{(d-7)(d-8)}{2}$ with $18 \le d \le 20, t_2 = 0$

d	$[\sigma * e, B; multiplicities]$	1/1
$\frac{u}{18}$	$\frac{[0 * e, D, \text{intropletes}]}{[6 * 60; 3^{80}]}$	$\frac{\nu_1}{3}$
18	$[7 * 36, 1; 3^{27}]$	3
18	$[8 * 24; 4^2, 3^8]$	4
18	$[8 * 25; 4^5, 3^4]$	4
18	$[8 * 26; 4^8]$	4
18	$[9*19;4,3^2]$	4
18	[10 * 16; 1]	1
19	$[6*71;3^{99}]$	3
19	$[7 * 38; 3^{35}]$	3
19	$[8 * 27; 3^{15}]$	3
19	$[8 * 28; 4^3, 3^{11}]$	4
19	$[8 * 29; 4^6, 3^7]$	4
19	$[8 * 30; 4^9, 3^3]$	4
19	$[9 * 26, 1; 3^6]$	3
19	$[9 * 22; 4^2, 3^3]$	4
19	$[9 * 27, 1; 4^4]$	4
20	$[6 * 83; 3^{120}]$	3
20	$[7 * 44; 3^{44}]$	3
20	$[8 * 31; 3^{20}]$	3
20	$[8 * 32; 4^3, 3^{16}]$	4
20	$[8*33;4^6,3^{12}]$	4
20	$[8 * 34; 4^9, 3^8]$	4
20	$[8 * 35; 4^{12}, 3^4]$	4
20	$[8 * 36; 4^{15}]$	4
20	$[9 * 29, 1; 3^9]$	3
20	$[9 * 25; 4^2, 3^6]$	4
20	$[9 * 30, 1; 4^4, 3^3]$	4
20	$[9 * 26; 4^6]$	4
20	$[10 * 21; 4^2]$	4
20	[11 * 18; 1]	1

References

- Coolidge J.L., A Treatise on Algebraic Plane Curves, Oxford Univ. Press., (1928).
- [2] Hartshorne R., Curves with high self-intersection on algebraic surfaces Publ.I.H.E.S. vol.36, (1970), 111-126.
- [3] Iitaka S., Algebraic Geometry, An Introduction of Birational Geometry of Algebraic Varieties, Springer Verlag. (1981).
- [4] Iitaka S., Basic structure of algebraic varieties, Advanced Studies of Pure Mathematics, 1, 1983, Algebraic Varieties and Analytic Varieties, Kinokuniya (1983) 303–316.
- [5] Iitaka S., On irreducible plane curves, Saitama Math. J. 1 (1983), 47–63.
- [6] Iitaka S., Birational geometry of plane curves ,Tokyo J. Math., 22(1999), pp289-321.
- [7] Iitaka S., On logarithmic plurigenera of algebraic plane curves ,in Iitaka's web page. Birational geometry of plane curves ,Tokyo J. Math., 22(1999), pp289-321.
- [8] Kodaira K., On compact analytic surfaces II, Ann. of Math., 77(1963), 563-626
- [9] Matsuda O., On numerical types of algebraic curves on rational surfaces, Tokyo Journal of Mathematics vol.24, No.2, pp.359-367, December 2001.
- [10] Matsuda O., Birational classification of curves on irrational ruled surfaces, Tokyo Journal of Mathematics vol.25, No.1, pp.139-151, June 2002.
- [11] Nagata M., On rational surfaces I., Mem. Coll. Sci. Univ. Kyoto 32, 351-370 (1960).
- [12] Semple, J.G. and Roth,L. Introduction to Algebraic Geometry, Cambridge University Press, 1949.