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1 Introduction

We shall study algebraic plane curves C on the projective plane P2 defined
over the field of complex numbers. Birational maps between from P2 into it-
self are called Cremona transformations. If C1 is a proper transform of C by
a Cremona transformation, the pair (P2, C1) is said to be birationally equiva-
lent to (P2, C). The purpose of this paper is to give certain conditions which
characterize (P2, D) where D is a nonsingular curve, in the sense of birational
equivalence.

In general, let C be a curve on a nonsingular projective surface S. Pairs
(S, C) of S and C are objects of our study. Two pairs (S, C) and (S1, C1) are
said to be birationally equivalent if there exists a birational map h : S → S1 such
that the proper transform h[C] coincides with C1. If D is a nonsingular curve on
S, then it is easy to check that dim |mKS +aD|+1, KS being a canonical divisor
on S, are birational invariants whenever m ≥ a ≥ 0. dim |mKS + aD| + 1 are
denoted by Pm,a[D], which may be called mixed plurigenera of the pair (S,D).
Pm,m[D] turns out to be logarithmic plurigenera of an open surface S − D,
denoted by Pm(S − D). For simplicity, Pm,m[D] is indicated by Pm[D], by
which Kodaira dimension of the pair (S,C), written as κ[C], is defined.

Hereafter,S is assumed to be a rational surface. Then P1[D] coincides with
the genus of D, denoted by g(D). Making use of mixed plurigenera, we obtain
the characterizations of a line and a nonsingular cubic as follows:

Theorem 1 Let (S, D) be a pair of a nonsingular projective surface S and a
curve on S.

If P2,1[D] = 0 and g(D) = 0 then (S, D) is birationally equivalent to (P2, L),
L being a line.

Note that the condition P2,1[D] = 0 and g(D) = 0 is equivalent to P2[D] = 0.

Theorem 2 If P2,1[D] = 1 and g(D) = 1 then (S, D) is birationally equivalent
to (P2, C3), C3 being a nonsingular cubic.

These results are mainly due to [1, p398,p404]. We shall extend his results
into higher degree cases.

We begin with computing mixed plurigenera Pm,a[D] when (S, D) = (P2, Cd),
Cd being a nonsingular curve of degree d. For m ≥ a and d ≥ 4,

1. Pm,a[D] =
(3m− 1− ad)(3m− 2− ad)

2
,

2. Pm[D] =
((d− 3)m + 1)((d− 3)m + 2)

2
,

3. P1[D] =
(d− 2)(d− 1)

2
= g(D),

4. P2[D] = (d− 2)(2d− 5),
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5. P2,1[D] =
(d− 4)(d− 5)

2
,

6. P3,1[D] =
(d− 7)(d− 8)

2
where d ≥ 7 .

One can ask to what extent (S,D) is determined by its mixed plurigenera.
Our purpose is to establish some characterizations of pairs of P2 and nonsingular
curves using two mixed plurigenera, which will be established in main results.
For examples, if P2[D] = 6 and g = 3 then (S,D) is birationally equivalent to
(P2, C4).

The similar results are obtained for d = 6. However, in the case of d = 5, we
have a counter example:

If P2[D] = 10 and g = 6 then (S, D) is birationally equivalent to either
(P2, C5) or (P2, C ′6), where C ′6 is a plane curve of degree 6 with two singular
points whose multiplicities are 2 and 3.

2 Some basic results

2.1 Minimal models

A non-singular pair (S, D) is said to be relatively minimal , whenever the in-
tersection number D · E ≥ 2 for any exceptional curve (of the first kind) E on
S such that E 6= D. Moreover, the pair (S, D) is said to be minimal , if every
birational map from any non-singular pair (S1, D1) into (S, D) turns out to be
regular. Any relatively minimal pair (S,D) is minimal if κ[D] = 2 (see Iitaka
[5]).

Relatively minimal models of rational surfaces are the projective plane P2

or P1 × P1 or a P1− bundle over P1 , which has a section ∆∞ with negative
self intersection number. The last surface is denoted by a symbol ΣB where
−B denotes the self intersection number ∆∞2. Here, we call ΣB a Hirzebruch
surface of degree B after Kodaira. The Picard group of ΣB is generated by a
section ∆∞ and a fiber Fc = ρ−1(c) of the P1− bundle, where ρ : ΣB → P1 is
the projection.

Let C be an irreducible curve on ΣB . Then there exist integers σ and e such
that

C ∼ σ∆∞ + eFc.

Here the symbol ∼ means the linear equivalence between divisors.
We have C ·Fc = σ and C ·∆∞ = e−B ·σ. Hereafter, suppose that C 6= ∆∞.

Thus C ·∆∞ ≥ 0 and hence, e ≥ Bσ. If B > 0 then ∆∞2 = −B < 0 and such
a section ∆∞ is uniquely determined. For a surface Σ0 = P1 × P1 , we get
Fc ∼ P1× point and ∆∞ ∼ point ×P1. We may assume that e ≥ σ. Thus σ
and e are uniquely determined for a given curve C on ΣB .

By ν1, ν2, · · ·, νr we denote the multiplicities of singular points of C where
ν1 ≥ ν2 ≥ · · · ≥ νr.
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The symbol [σ ∗ e,B; ν1, ν2, · · ·, νr] is said to be the type of a pair (ΣB , C).
If B=0, we omit 0 in the symbol of type; namely, [σ ∗ e; ν1, ν2, · · ·, νr] stands for
[σ ∗ e,B; ν1, ν2, · · ·, νr].

Assume that σ ≥ 2ν1 and e ≥ σ + Bν1. Moreover, if B = 1 then assume
e − σ > 1. When the above conditions are satisfied, the pair (ΣB , C) is said
to be # minimal. Occasionally, the # minimal pair (ΣB , C) is said to be a #
minimal model of a pair (S, D), if it is birationally equivalent to (S, D) ( See
[5]). Moreover, any minimal pair (S,D) is obtained from a # minimal model
by resolving singularities of C, if it is not isomorphic to (P2, Cd), Cd being a
nonsingular curve (See [5]).

If (S,D) is minimal and κ[D] = 2 , then the following results are obtained(see
[7]).

1. If g ≥ 1 and σ ≥ 4 then P2[D] = Z2 + 2g + 1.

2. If g ≥ 0 and σ ≥ 4 then P2,1[D] = Z2 − g + 1.

3. If g ≥ 0 , σ ≥ 6 and the type is not [6 ∗ 8, 1; 2r] for r ≥ 0, then P3,1[D] =
3Z2 − 7g + D2 + 1.

4. If g ≥ 1 then P2[D] = P2,1[D] + 3g.

5. If g = 0 then P2[D] = P2,1[D] = Z2 + 2.

Here g = g − 1.

The next result may be noteworthy.

Remark 1 If the pair (S, D) satisfies that g(D) =
(d− 2)(d− 1)

2
, P2[D] =

(d − 2)(2d − 5), P3,1[D] =
(d− 7)(d− 8)

2
, then (S, D) is birationally equivalent

to (P2, Cd), where Cd is a nonsingular curve with degree d.

In order to verify this, we can assume that (S,D) is minimal.
It is easy to check κ[D] = 2. Then Z = KS + D is nef and big. By the

formulas P2[D] = Z2+2g, P3,1[D] = 3Z2+D2−7g, g being g−1, the hypothesis
implies that D2 = d2, Z2 = (d− 3)2. From the formula Z2 = K2

S −D2 + 4g, it
follows that (d − 3)2 = K2

S − d2 + 2d(d − 3). Hence, K2
S = 9. This yields that

S = P2, which completes the proof.

This result suggests that giving values of three mixed plurigenera such as
g, P2[D], P3,1[D] is superabundant.
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2.2 Formulas

Letting g0 be the virtual genus of C , K0 a canonical divisor on ΣB and defining
Z0 to be C + K0 , we get

g0 = (e− 1)(σ − 1)− Bσ(σ − 1)
2

,

C2 = 2eσ − σ2B.

Moreover, letting f = e−Bσ = C ·∆0 ≥ 0, we obtain

C ∼ σ∆0 + fFc,

K0 ∼ −2∆0 + (B − 2)Fc,

Z0 = C + K0 ∼ (σ − 2)∆0 + (f − 2 + B)Fc,

where ∆0 is an irreducible curve linearly equivalent to ∆∞ + BFc.
Denoting 2f + σB by B̃, we find

g0 =
(σ − 1)(B̃ − 2)

2
, C2 = σB̃,

Z2
0 = (σ − 2)(B̃ − 4),

(2Z0 − C) · Z0 = (σ − 3)(B̃ − 6)− 2,

(2Z0 − C) · (3Z0 − 2C) = (σ − 5)(B̃ − 10)− 2.

These formulas suggest that B̃ is very useful. Hence, we introduce the
following notion.

Two types [σ ∗ e,B; ν1, ν2, · · ·, νr] and [σ ∗ e′, B′; ν1, ν2, · · ·, νr] are said to be
similar if B̃ = B̃′ , where f ′ = e′ − σB′ and B̃′ = 2f ′ + σB′. For simplicity,
we omit the similar types in the following tables of types of pairs.

2.3 virtual mixed plurigenera

If C is a curve on S, define V Pm,a[C] to be dim |mKS + aC|+ 1, which we call
virtual mixed plurigenus of the pair (S, C).

Let (S, D) be a pair derived from a # minimal pair (ΣB , C) of type [σ ∗
e,B; ν1, · · · , νr], by resolving singularities of C. Then by Ei denoting the ex-
ceptional divisor arising from the singular points pj of C, we obtain

mKS + aD ∼ mK0 + aC +
r∑

j=1

(m− aνi)Ei.

Suppose thatm ≥ aν1. Then
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|mKS + aD| = |mK0 + aC|+
r∑

j=1

(m− aνi)Ei.

Hence,
V Pm,a[C] = Pm,a[D].

Therefore, we obtain the next result.

Lemma 1 Let (S, D) be a pair. If m ≥ aν1 then V Pm,a[C] = Pm,a[D].

Equivalently, the next result follows.
If V Pm,a[C] > Pm,a[D] then m < aν1

Note that this result implies the famous Noether’s inequality in the theory
of Cremonian geometry.

2.4 Hartshorne’s lemma

The next result came from the proof in [2, Hartshorne,Proposition (3.2),p118].

Lemma 2 Let (S,D) be a minimal pair derived from a # minimal pair (ΣB , C)
of type [σ ∗ e,B; ν1, · · · , νr], by resolving singularities of C. Then
we have either (1) |σZ−(σ−2)D| 6= ∅ or (2) B = 1, 2f < σ and |eZ−(e−3)D| 6=
∅ .

Proof. By Ei denoting the exceptional divisor arising from the singular points
pj of C, we obtain

σZ − (σ − 2)D = σKS + 2D

∼ 2(σ∆0 + fFc −
r∑

j=1

νiEi)

+ σ(−2∆0 + (B − 2)Fc +
r∑

j=1

Ei)

∼ (2f + σ(B − 2))Fc +
r∑

j=1

(σ − 2νi)Ei.

Letting ε1 be 2f + σ(B − 2), we have the following two cases:
(1) If B = 0 then ε1 = 2f − 2σ ≥ 0 and if B ≥ 2 then ε1 ≥ 0.
(2) if B = 1 and if ε1 = 2f − σ < 0 then 3σ − 2e = σ − 2f = −ε1 > 0 and

hence, |σZ − (σ − 2)D| = ∅. In this case,

e− 3νi ≥ e− 3ν1 ≥ e− ν1 − 2ν1 ≥ σ − 2ν1 ≥ 0.
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Thus,

eZ − (e− 3)D = eKS + 3D

∼ 3(σ∆0 + fFc −
r∑

j=1

νiEi)

+ e(−2∆0 + (B − 2)Fc +
r∑

j=1

Ei)

∼ (3σ − 2e)(∆0 − Fc) +
r∑

j=1

(e− 3νi)Ei

∼ (3σ − 2e)∆∞ +
r∑

j=1

(e− 3νi)Ei.

Therefore, |eZ − (e− 3)D| 6= ∅, which completes the proof.

Note that Pσ,2[D] = V Pσ,2[C]andPe,3[D] = V Pe,3[C].

The next result follows from Lemma 1 immediately.

Lemma 3 Let (S,D) be a minimal pair derived from a # minimal pair (ΣB , C)
of type [σ ∗ e,B; ν1, · · · , νr].

1. Either (1) σZ2 ≥ 2(σ − 2)g or (2) B = 1 and eZ2 ≥ 2g(e− 3).

2. Either (1) 2σg ≥ (σ − 2)D2 or (2) B = 1 and 2ge ≥ (e− 3)D2.

Here g denotes the genus of D.

Proof. The assertion 1 follows from the fact that Z is nef where g > 0. In
order to verify (1) of the assertion 2, assume that

2σg − (σ − 2)D2 = (σZ − (σ − 2)D) ·D < 0.

Then since |σZ−(σ−2)D)| 6= ∅, it follows that D2 < 0 and 2σg < (σ−2)D2 ≤ 0.
Hence, g = 0. Then noting that σ ≥ 4, we have

−2− 4
σ − 2

≥ −4 and − 4 ≥ D2

and thus
−2− 4

σ − 2
≥ D2.

It follows that 2σg = −2σ ≥ (σ − 2)D2.
By the similar argument, we are done in the assertion 2.
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3 Bigenus and genus

Suppose that (S, D) is a minimal pair which satisfies (1) P2[D] = (2d−5)(d−2),
for some d ≥ 4 and (2) δ = g − (d−1)(d−2)

2 ≥ 0 , g being the genus of D.
Assume that (S, D) is not birationally equivalent to (P2, Cd),Cd being a

nonsingular curve. Then (S,D) is obtained from a # minimal model (ΣB , C)
with type [σ ∗ e,B; ν1, · · · , νr] by shortest resolution of singularities of C. From
the formula P2[D] = Z2 + 2g − 1, Z being KS + D ([7]), it follows that

(2d− 5)(d− 2) = Z2 + 2g − 1 = Z2 + d2 − 3d + 2 + 2δ − 1.

Hence ,

Z2 = (d− 3)2 − 2δ. (1)

Denoting by tj the numbers of singular points of C with multiplicities j,
define X to be

∑ν1
j=2

j(j−1)
2 tj . Then by genus formula,

(σ − 1)(B̃ − 2) = 2g + 2X = d2 − 3d + 2 + 2δ + 2X. (2)

Moreover, defining U to be
∑ν1

j=2(j − 1)2tj , we get

Z2 + U = (σ − 2)(B̃ − 4). (3)

Multiplying (3) by σ − 1, we have

(σ − 1)Z2 + (σ − 1)U = (σ − 2)((σ − 1)(B̃ − 2)− 2(σ − 1))
= (σ − 2)(2g + 2X − 2(σ − 1))

= (σ − 2)(d2 − 3d + 2 + 2δ) + 2(σ − 2)X − 2(σ − 1)(σ − 2).

On the other hand,

(σ − 1)Z2 + (σ − 1)U = (σ − 1)((d− 3)2 − 2δ) + (σ − 1)U.

From these , it follows that

(σ − 1)((d− 3)2 − 2δ)− (σ − 2)(d2 − 3d + 2)

= 2δ(σ − 2) + 2(σ − 2)X − (σ − 1)U − 2(σ − 1)(σ − 2).

Defining Θ2 to be 2(σ − 2)X − (σ − 1)U , we have

Θ2 =
ν1∑

j=2

{(σ − 2)j(j − 1)− (σ − 1)(j − 1)2}tj
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=
ν1∑

j=2

{(j − 1)(σ − j − 1)}tj ,

and

(σ − 1)(d− 3)2 − (σ − 2)(d2 − 3d + 2) + 2(σ − 1)(σ − 2)

= d2 − 3σd + 2σ2 + σ − 1

= (d− σ − 1)(d− 2σ + 1).

Finally, we find the following formula:

(d− σ − 1)(d + 1− 2σ) = 2(2σ − 3)δ + Θ2, (4)

where

Θ2 =
ν1∑

j=2

(j − 1)(σ − j − 1)tj = (σ − 3)t2 + 2(σ − 4)t3 + 3(σ − 5)t4 + · · · .

By (d− σ − 1)(d + 1− 2σ) ≥ 0, we have either d ≥ 2σ − 1 or d ≤ σ + 1.

3.1 Estimate of d

We shall show that d ≥ 2σ − 1. First, by Lemma 2, we obtain either (1)
σZ2 ≥ 2(σ − 2)g or (2) B = 1 and eZ2 ≥ 2(e− 3)g .

In the first case,

σZ2 = σ((d− 3)2 − 2δ) ≥ 2(σ − 2)g = (σ − 2)(d(d− 3) + 2δ).

Thus,

(d− 3)(2d− 3σ) ≥ 4(σ − 1)δ ≥ 0.

Therefore,

σ ≤ 2d

3
.

If σ ≥ d− 1 then

d− 1 ≤ σ ≤ 2d

3
.

Hence, d ≤ 3, which concordat the hypothesis d ≥ 4, i.e., d ≥ 2σ − 1.

In the second case,

eZ2 = e((d− 3)2 − 2δ) ≥ 2g(e− 3) = (e− 2)(d(d− 3) + 2δ)
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and so

(d− 3)(2d− 3e) ≥ 4δ(e− 1) ≥ 0.

Hence,

2d ≥ 3e = 3(f + σ) ≥ 3ν1 + 3σ;

thus

3σ ≤ 2d.

If σ ≥ d − 1 then 2d > 3σ ≥ 3d − 3, which implies that d ≤ 1. This
contradicts the hypothesis. Hence, σ ≥ d− 1 cannot occur. Thus , we conclude
that d ≥ 2σ − 1.

If d = 2σ − 1, then r = 0. By Z2 = (σ − 2)(B̃ − 4) and Z2 = (d − 3)2, we
obtain

B̃ = 2(d− 1), B̃ =
d + 1

2
B + 2f.

When one puts B = 0, we have f = e = d− 1 and the type is [d+1
2 ∗ (d− 1); 1].

In general, the type becomes [d+1
2 ∗ (d− 1); 1] and its similar types.

Define k to be d−2σ+1 ≥ 0. Then d = 2σ+k−1. Replacing d by 2σ+k−1,
the formula (4) becomes

k(σ + k − 2) = 2(2σ − 3)δ + Θ2.

If r > 0 then k(σ + k − 2) ≥ (k + 1)(σ − k − 3) and thus,

σ ≤ 2k2 + 2k + 3.

Therefore, given k, we have σ such that 3 ≤ σ ≤ 2k2+2k+3 and the equality

k(σ + k − 2) = 2(2σ − 3)δ + (σ − 3)t2 + 2(σ − 4)t3 + 3(σ − 5)t4 + · · · .

holds. This equation has a finite number of non-negative solutions σ, δ, t2, t3, · · · .
For example, in the cases of k = 1, 2, 3, we have the following solutions listed in
the next tables using computer.
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Table 1: types with k = 1

d [σ ∗ e , B;multiplicities] ν1 δ
8 [4 ∗ 9; 23] 2 0
10 [5 ∗ 13, 1; 22] 2 0
14 [7 ∗ 18, 1; 3] 3 0

Table 2: types with k = 2

d [σ ∗ e , B;multiplicities] ν1 δ
9 [4 ∗ 13; 28] 2 0
11 [5 ∗ 16, 1; 25] 2 0
13 [6 ∗ 15; 24] 2 0
13 [6 ∗ 16; 33] 3 0
15 [7 ∗ 17; 3, 22] 3 0
17 [8 ∗ 19; 32] 3 0
19 [9 ∗ 25, 1; 23] 2 0
19 [9 ∗ 21; 4, 2] 4 0
23 [11 ∗ 30, 1; 3, 2] 3 0
25 [12 ∗ 27; 5] 5 0
31 [15 ∗ 40, 1; 4] 4 0
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Table 3: types with k = 3

d [σ ∗ e , B;multiplicities] ν1 δ
10 [4 ∗ 18; 215] 2 0
10 [4 ∗ 15; 25] 2 1
12 [5 ∗ 17; 29] 2 0
12 [5 ∗ 18, 1; 22] 2 1
14 [6 ∗ 18; 27] 2 0
14 [6 ∗ 19; 33, 23] 3 0
14 [6 ∗ 17; 2] 2 1
16 [7 ∗ 23, 1; 26] 2 0
16 [7 ∗ 20; 32, 23] 3 0
16 [7 ∗ 24, 1; 34] 3 0
18 [8 ∗ 22; 4, 3, 22] 4 0
18 [8 ∗ 23; 43] 4 0
20 [9 ∗ 23; 25] 2 0
20 [9 ∗ 28, 1; 33] 3 0
20 [9 ∗ 28, 1; 4, 23] 4 0
20 [9 ∗ 24; 42, 2] 4 0
20 [9 ∗ 27, 1; 1] 1 1

Observing these tables, we obtain the following result.

Proposition 1 If P2[D] = (d − 2)(2d − 5) and δ = g − (d−1)(d−2)
2 ≥ 0, then

d ≥ 4ν1 + 3 except for the following cases:

1. d = 8, [4 ∗ 9; 23], d = 4ν1,

2. d = 10, [5 ∗ 13, 1; 22], d = 4ν1 + 2,

3. d = 9, [4 ∗ 13; 28], d = 4ν1 + 1,

4. d = 13, [6 ∗ 16; 33], d = 4ν1 + 1,

5. d = 10, [4 ∗ 18; 215], d = 4ν1 + 2,

6. d = 10, [4 ∗ 15; 25], d = 4ν1 + 2,

7. d = 14, [6 ∗ 19; 33, 23], d = 4ν1 + 2,

8. d = 18, [8 ∗ 22; 4, 3, 22], d = 4ν1 + 2,

9. d = 18, [8 ∗ 23; 43], d = 4ν1 + 2.
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3.2 Converse

We shall show the converse.

Proposition 2 Suppose that nonnegative integers d ≥ 4, σ, δ, tj(j = 2, 3, · · · )
satisfy that

(d− σ − 1)(d + 1− 2σ) = 2(2σ − 3)δ + Θ2

where

Θ2 =
ν1∑

j=2

(j − 1)(σ − j − 1)tj .

Moreover, assume that there exists a minimal pair (S,D) obtained from a #
minimal model (ΣB , C) with type [σ ∗ e,B; ν1, ν1, · · · , νr] which corresponds to
integers d, σ,∆, tj(j = 2, 3, · · · ). Then P2[D] = (2d− 5)(d− 2).

Proof. Letting X =
∑ν1

j=2
j(j−1)

2 tj and U =
∑ν1

j=2(j − 1)2tj , we have Θ2 =
2(σ − 2)X − (σ − 1)U. Considering both sides of the formula (4) mod (σ − 1),
we obtain

(d− σ − 1)(d + 1− 2σ) ≡ (d− 1)(d− 2) mod (σ − 1),
2(2σ − 3)δ + Θ2 ≡ −2δ + Θ2 mod (σ − 1),

Θ2 = 2(σ − 2)X − (σ − 1)U ≡ −2X mod (σ − 1).

Hence, from the formula (4), it follows that

(d− 1)(d− 2) + 2δ + 2X ≡ 0 mod (σ − 1),

which implies that
d2 − 3d + 2 + 2δ + 2X

σ − 1
is an integer. Then define B̃0 to be

2 +
d2 − 3d + 2 + 2δ + 2X

σ − 1
.

Now assume that there exists a minimal pair (S, D) obtained from a #
minimal model (ΣB , C) by shortest resolution of singularities, whose type is
[σ ∗ e,B; ν1, · · · , νr], where B̃ = B̃0 and the sequence of multiplicities ν2, ν3, · · ·
corresponds to the sequence of t2, t3, · · · . Indeed, when B̃0 is even , one can put
B = 0, e = f = B̃0

2 . Further, when B̃0 is odd , σ is verified to be odd and so one
can put B = 1, e = B̃0+σ

2 .
By genus formula,

(σ − 1)(B̃ − 2) = 2g + 2X,

where g is the genus of D. However, by the definition of B̃, we find

(σ − 1)(B̃ − 2) = d2 − 3d + 2 + 2δ + 2X.
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So, the genus g coincides with d2 − 3d + 2 + 2δ.

Next, we shall prove that Z2 = (d− 3)2 − 2δ.
In the previous section, we assumed Z2 = (d − 3)2 − 2δ. But here, the

equation is not assumed. Define an invariant ε to be Z2− ((d− 3)2− 2δ). Thus
Z2 = ε + (d− 3)2 − 2δ and then

(σ − 2)(B̃ − 4) = Z2 + U = ε + (d− 3)2 − 2δ + U.

By multiplying this by σ − 1, we have

(σ − 1)(ε + (d− 3)2) + (σ − 1)U

= (σ − 2)((σ − 1)(B̃ − 2)− 2(σ − 1))

= (σ − 2)(d2 − 3d + 2 + 2δ) + 2(σ − 2)X − 2(σ − 1)(σ − 2).

From this , it follows that

(σ − 1)(ε + (d− 3)2 − 2δ)− (σ − 2)(d2 − 3d + 2)
= (σ − 1)ε + 2δ(σ − 2) + 2(σ − 2)X − (σ − 1)U − 2(σ − 1)(σ − 2).

Thus we obtain

(σ − 1)ε + (d− σ − 1)(d + 1− 2σ) = 2(2σ − 3)δ + Θ2. (5)

Recall that we assumed the equality (4). Then the formula (5) induces (σ −
1)ε = 0. Hence, ε = 0. Thus Z2 = (d − 3)2 − 2δ is derived and we establish
P2[D] = (2d− 5)(d− 2).

3.3 Examples

If σ = 3 then ν1 = 1 and the formula (4) becomes (d− 4)(d− 5) = 6δ. Hence,

d ≡ 1, 2, 4, 5 mod 6.

Let [3 ∗ e, B; 1] be the type. Then Z2 = B̃ − 4 = (d− 3)2 − 2δ. From this it
follows that

B̃ = (d− 3)2 + 4− (d− 4)(d− 5)
3

=
2d2 − 9d + 19

3
.

More precisely, when d ≡ 1, 5 mod 6, it is easy to check that 2d2−9d+19
3 is even.

Hence,one can put B = 0, f = 2d2−9d+19
6 .

When d ≡ 2, 4 mod 6, it is easy to check that 2d2−9d+19
3 is odd. Hence,one

can put B = 1, 2f + 3 = B̃. Thus f = 2d2−9d+10
6 .

14



Suppose that δ = 0. Then d = 4, 5.

If d = 4 then B = 1, f = 1, e = 4. Then the type is [3 ∗ 4, 1; 1]. But this
contradicts the condition of #− minimality.

If d = 5 then B = 0, e = f = 4. Then the type is [3 ∗ 4; 1], δ = 0.
If d = 7 then B = 0, e = 9. Then the type is [3 ∗ 9; 1], δ = 1.
If d = 8 then B = 1, e = 14. Then the type is [3 ∗ 14, 1; 1], δ = 2.
If d = 10 then B = 1, e = 23. Then the type is [3 ∗ 23, 1; 1], δ = 5.
If d = 11 then B = 0, e = 27. Then the type is [3 ∗ 27; 1], δ = 7.

If σ ≥ 4 then suppose that r = 0 and δ = 0.
Using computer one has the following tables of types where 5 ≤ d ≤ 12.

Table 4: types of pairs where P2[D] = (d−2)(2d−5) with 5 ≤ d ≤ 12 and δ ≥ 0

d [σ ∗ e , B;multiplicities] ν1 δ
5 [3 ∗ 4; 1] 1 0
7 [3 ∗ 9; 1] 1 1
7 [4 ∗ 6; 1] 1 0
8 [3 ∗ 14, 1; 1] 1 2
8 [4 ∗ 9; 23] 2 0
9 [4 ∗ 13; 28] 2 0
9 [5 ∗ 8; 1] 1 0
10 [3 ∗ 23, 1; 1] 2 5
10 [4 ∗ 18; 215] 2 0
10 [4 ∗ 15; 25] 2 1
10 [5 ∗ 13, 1; 22] 2 0
11 [3 ∗ 27; 1] 1 7
11 [4 ∗ 24; 224] 2 0
11 [4 ∗ 21; 214] 2 1
11 [4 ∗ 18; 24] 2 2
11 [5 ∗ 16, 1; 25] 2 0
11 [6 ∗ 10; 1] 1 0
12 [4 ∗ 31; 235] 2 0
12 [4 ∗ 28; 225] 2 1
12 [4 ∗ 25; 215] 2 2
12 [4 ∗ 22; 25] 2 3
12 [5 ∗ 17; 29] 2 0
12 [5 ∗ 18, 1; 22] 2 1

Theorem 3 If 4 ≤ d ≤ 9 , P2[D] = (d − 2)(2d − 5) and g = d2−3d+2
2 then the

pair (S,D) becomes a pair of P2 and a nonsingular plane curve or the type is
[d+1

2 ∗ (d− 1); 1] or [4 ∗ 9; 23] or [4 ∗ 13; 28].
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Table 5: types of pairs where P2[D] = (d − 2)(2d − 5) with 13 ≤ d ≤ 15 and
δ = 0

d [σ ∗ e , B;multiplicities] ν1 δ
13 [4 ∗ 39; 248] 2 0
13 [5 ∗ 21; 214] 2 0
13 [6 ∗ 15; 24] 2 0
13 [6 ∗ 16; 33] 3 0
13 [7 ∗ 12; 1] 1 0
14 [4 ∗ 48; 263] 2 0
14 [5 ∗ 28, 1; 220] 2 0
14 [6 ∗ 18; 27] 2 0
14 [6 ∗ 19; 33, 23] 3 0
14 [7 ∗ 18, 1; 3] 3 0
15 [4 ∗ 58; 280] 2 0
15 [5 ∗ 33, 1; 227] 2 0
15 [6 ∗ 22; 32, 28] 3 0
15 [6 ∗ 23; 35, 24] 3 0
15 [6 ∗ 24; 38] 3 0
15 [7 ∗ 17; 3, 22] 3 0
15 [8 ∗ 14; 1] 1 0

4 D2 and genus

Next, suppose that D2 = d2 and g ≤ (d−1)(d−2)
2 . So in this case δ(−) is defined

to be (d−1)(d−2)
2 − g ≥ 0. Thus 2g = d2 − 3d + 2− 2δ(−).

Assume that (S, D) is not birationally equivalent to (P2, Cd),Cd being a
nonsingular curve. Thus (S,D) is obtained from a # minimal model (ΣB , C) of
type [σ ∗ e,B; ν1, ν1, · · · , νr] by shortest resolution of singularities of C. Then

Z2 = K2
S −D2 + 4g

= 8− r − d2 + 2d(d− 3)− 4δ(−)

= (d− 3)2 − 1− r − 4δ(−).

Hence,

Z2 = (d− 3)2 − 1− r − 4δ(−). (6)

The genus formula implies

(σ − 1)(B̃ − 2) = 2g + 2X. (7)
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Moreover,

σB̃ = D2 + W, (8)

where

W =
ν1∑

j=2

j2tj .

Multiplying (7) by σ, we obtain

(σ − 1)(σB̃ − 2σ) = 2σg + 2σX,

and by (8),

(σ − 1)(σB̃ − 2σ)

= (σ − 1)(D2 + W )− 2σ(σ − 1)
= 2σg + 2σX

= (d2 − 3d + 2)σ − 2δ(−)σ + 2σX.

So,

(σ − 1)D2 + (σ − 1)W − 2σX − 2σ(σ − 1)

= (d2 − 3d + 2)σ − 2δ(−)σ.

Thus, defining ΘD to be (σ − 1)W − 2σX, we have

ΘD =
ν1∑

j=2

{(σ − 1)j2 − (σ − 1)j(j − 1)}tj

=
ν1∑

j=2

j(σ − j)tj .

On the other hand,

− (σ − 1)d2 + (d2 − 3d + 2)σ + 2(σ − 1)(σ − 2)

= d2 − 3σd + 2σ2

= (d− σ)(d− 2σ).

Thus we find the following formula:

(d− σ)(d− 2σ) = 2σδ(−) + ΘD. (9)

In particular, (d− σ)(d− 2σ) ≥ 0 implies

d ≤ σ or d ≥ 2σ. (10)
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4.1 Estimate of d

We shall show that d ≥ 2σ. Actually, by Lemma 2, we obtain either (1) 2σg ≥
(σ − 2)D2 or (2) B = 1 and eZ2 ≥ 2g(e− 3).

In the first case,

2σg = σ(d2 − 3d− 2δ(−)) ≥ (σ − 2)D2 = (σ − 2)d2.

Hence, g ≥ 0 and d(2d− 3σ) ≥ 2σg ≥ 0. Thus,

σ ≤ 2d

3
< d.

We can check d ≥ σ in the second case, too. Hence by (10), d ≥ 2σ.

If r = 0 and δ(−) = 0, then d = 2σ. Since D2 = d2, it follows that B̃ = 2d.

Hence, the type becomes [d
2 ∗ e,B; 1] such that e = d + dB

4 . These types are
similar to the type [d

2 ∗ 2d; 1]. Thus , if d is even, the types are [d
2 ∗ 2d; 1] and

their similar ones.

Define k to be d−2σ. Then d = 2σ+k. We suppose that k > 0. Substituting
d = 2σ + k, the formula (9) becomes

k(σ + k) = 2σδ(−) + ΘD.

If r > 0 then k(σ + k) ≥ (k + 1)(σ − k − 1). Thus,

σ ≤ 2k2 + 2k + 1.

For k = 1, 2, 3, we have the following tables.

Table 6: types in the case of D2 = d2 with k = 1

d [σ ∗ e , B;multiplicities] ν1 δ(−)

11 [5 ∗ 15, 1; 2] 2 0
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Table 7: types in the case of D2 = d2 with k = 2

d [σ ∗ e , B;multiplicities] ν1 δ(−)

10 [4 ∗ 14; 23] 2 0
10 [4 ∗ 13; 2] 2 1
14 [6 ∗ 17; 22] 2 0
22 [10 ∗ 25; 4] 4 0
28 [13 ∗ 37, 1; 3] 3 0

Table 8: types in the case of D2 = d2 with k = 3

d [σ ∗ e , B;multiplicities] ν1 δ(−)

13 [5 ∗ 21, 1; 24] 2 0
15 [6 ∗ 21; 33] 3 0
17 [7 ∗ 25, 1; 23] 2 0
21 [9 ∗ 30, 1; 32] 3 0
21 [9 ∗ 25; 3] 3 1
21 [9 ∗ 29, 1; 1] 1 2
25 [11 ∗ 29; 3, 2] 3 0
29 [13 ∗ 39, 1; 2] 2 1
33 [15 ∗ 45, 1; 6] 6 0
37 [17 ∗ 49, 1; 22] 2 0
37 [17 ∗ 41; 5] 5 0
53 [25 ∗ 69, 1; 4] 4 0
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4.2 Converse

We shall show the converse.

Proposition 3 Suppose that nonnegative integers d ≥ 4, σ, δ, tj(j = 2, 3, · · · )
satisfy that

(d− σ)(d− 2σ) = 2σδ(−) + ΘD,

where

ΘD =
ν1∑

j=2

j(σ − j)tj .

Assume that there exists a minimal pair (S, D) obtained from a # minimal
model (ΣB , C) with type [σ ∗ e,B; ν1, ν1, · · · , νr] which corresponds to integers
d, σ,∆, tj(j = 2, 3, · · · ). Then D2 = d2.

To verify this, letting X =
∑ν1

j=2
j(j−1)

2 tj and W =
∑ν1

j=2 j2tj , we obtain
ΘD = (σ − 1)W − 2Xσ and then

(d− σ)(d− 2σ) ≡ d2 − 3d + 2 mod (σ − 1).

Furthermore,

2σδ(−) + ΘD ≡ 2δ(−) − 2Xσ mod (σ − 1).

By hypothesis,

0 = d2 − 3d + 2− (2σδ(−) + ΘD)

≡ d2 − 3d + 2− (2δ(−) − 2Xσ) mod (σ − 1).

Consequently,
d2 − 3d + 2− 2δ(−) + 2X

σ − 1
is an integer. Then define

B̃0 = 2 +
d2 − 3d + 2− 2δ(−) + 2X

σ − 1
.

By hypothesis, there exists a minimal pair (S, D) obtained from a # minimal
model (ΣB , C) with type [σ ∗ e,B; ν1, ν1, · · · , νr] such that B̃ = B̃0 and the
sequence of multiplicities ν2, ν3, · · · corresponds to the sequence of t2, t3, · · · .

By the condition , the genus g coincides with d2 − 3d + 2− 2δ(−).

Next, we shall prove that D2 = d2. Replacing D2 = d2 by D2 = ε + d2, by
the same argument as before, we obtain

(d− σ)(d− 2σ) = 2σδ(−) + ΘD + (σ − 1)ε. (11)

Since the equality

(d− σ)(d− 2σ) = 2σδ(−) + ΘD

was assumed, it follows that ε = 0. Hence, D2 = d2.
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4.3 Examples

If σ = 3 then ν1 = 1 and the formula becomes (d− 3)(d− 6) = 6δ(−). Hence,

d ≡ 0 mod 3.

By [3 ∗ e,B; 1] we denote the type. Then D2 = 3B̃ and therefore, B̃ = d2

3 .

When d = 3µ, we have B̃ = 3µ2 and δ = 3(µ−1)(µ−2)
2 . Hence, if d is even,

then put B = 0 and thus f = 3µ2

2 . The type is [3 ∗ 3µ2

2 ; 1] (or its similar ones).
If d is odd, then put B = 1 and thus f = 3µ2−3

2 . The type is [3 ∗ 3µ2+3
2 , 1; 1].

Suppose that δ(−) = 0. Then d = 6 and so by putting B = 0, we get e = 6
and the type becomes [3 ∗ 6; 1].

In general, if d = 9, then B = 1, e = 15, δ(−) = 3 and so the type is
[3 ∗ 15, 1; 1].

If d = 12, then B = 0, e = 24, δ(−) = 9 and so the type is [3 ∗ 24; 1].

Suppose that r = 0 and δ(−) = 0. Then by the formula, d = 2σ. In particular,
d is even. Hence,σ = d

2 . By D2 = σB̃ = d2 , we obtain

B̃ = 2d, B̃ =
d

2
B + 2f.

When B = 0, we have f = e = d and the type is [d
2 ∗ d; 1]. In general, the type

becomes [d
2 ∗ d; 1] and its similar ones.

Using computer, one has the following tables of types where 5 ≤ d ≤ 12.

Observing these formulas, we obtain the next proposition.

Theorem 4 Suppose that D2 = d2 and g = (d−1)(d−2)
2 .

Then whenever d = 4, 5, 7, 9, the pair is birationally equivalent to (P2, Cd),
Cd being a nonsingular curve.

5 Z2 and D2

Suppose that Z2 = (d− 3)2 and D2 ≥ d2 for some d ≥ 4. Then ∆ is defined to
be D2 − d2, which is nonnegative. g− (d−1)(d−2)

2 is denoted by δ, which will be
proved to be positive.

Assume that (S, D) is not birationally equivalent to (P2, Cd),Cd being a
nonsingular curve. Thus (S,D) is obtained from a # minimal model (ΣB , C) of
type [σ ∗ e,B; ν1, ν1, · · · , νr] by shortest resolution of singularities of C. Then
from

Z2 = K2
S −D2 + 4g,

it follows that

(d− 3)2 = Z2 = 8− r − (d2 + ∆) + 2d(d− 3) + 4δ.
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Table 9: types in the case of D2 = d2 with 4 ≤ d ≤ 13

d [σ ∗ e , B;multiplicities] ν1 δ(−)

6 [3 ∗ 6; 1] 1 0
8 [4 ∗ 8; 1] 1 0
9 [3 ∗ 15, 1; 1] 1 3
10 [4 ∗ 14; 23] 2 0
10 [4 ∗ 21; 2] 2 1
10 [5 ∗ 10; 1] 1 0
11 [5 ∗ 15, 1; 2] 2 0
12 [3 ∗ 24; 1] 1 9
12 [4 ∗ 22; 28] 2 0
12 [4 ∗ 22; 28] 2 0
12 [4 ∗ 29; 26] 2 1
12 [4 ∗ 36; 24] 2 2
12 [4 ∗ 43; 22] 2 3
12 [4 ∗ 50; 1] 1 4
12 [6 ∗ 12; 1] 1 0

Hence,

4δ = 1 + r + ∆. (12)

Multiplying (3) by σ, we obtain

σZ2 + σU = (σ − 2)(σB̃ − 4σ)

= (σ − 2)(D2 + W )− 4(σ − 2)σ

= (σ − 2)d2 + (σ − 2)∆ + (σ − 2)W − 4(σ − 2)σ.

On the other hand,

σZ2 + σU = σ(d− 3)2 + σU

= (σ − 2)d2 + (σ − 2)∆ + (σ − 2)W − 4(σ − 2)σ,

and so

σ(d− 3)2 − (σ − 2)d2 + 4(σ − 2)σ = (σ − 2)∆ + (σ − 2)W − σU.

Defining

ΘDZ = (σ − 2)W − σU,

we have

22



Table 10: types in the case of D2 = d2 with 13 ≤ d ≤ 18 where r > 0, δ(−) = 0

d [σ ∗ e , B; Type] ν1 δ(−)

13 [5 ∗ 21, 1; 24] 2 0
14 [4 ∗ 32; 215] 2 0
14 [5 ∗ 22; 26] 2 0
14 [6 ∗ 17; 22] 2 0
15 [6 ∗ 21; 33] 3 0
16 [4 ∗ 44; 224] 2 0
16 [5 ∗ 30; 211] 2 0
16 [6 ∗ 23; 25] 2 0
17 [5 ∗ 37, 1; 214] 2 0
17 [7 ∗ 25, 1; 23] 2 0
18 [4 ∗ 58; 235] 2 0
18 [6 ∗ 30; 29] 2 0
18 [6 ∗ 33; 38] 3 0
18 [7 ∗ 25; 32, 22] 3 0
19 [5 ∗ 47, 1; 221] 2 0
19 [6 ∗ 35; 33, 28] 3 0
19 [7 ∗ 31, 1; 26] 2 0
19 [7 ∗ 29; 35] 3 0
20 [4 ∗ 74; 248] 2 0
20 [5 ∗ 50; 225] 2 0
20 [6 ∗ 38; 214] 2 0
20 [6 ∗ 41; 38, 25] 3 0
20 [7 ∗ 32; 34, 23] 3 0
20 [8 ∗ 26; 24] 2 0
20 [8 ∗ 28; 43] 4 0
21 [6 ∗ 45; 37, 29] 3 0
21 [6 ∗ 48; 315] 3 0
21 [7 ∗ 39, 1; 34, 25] 3 0
21 [9 ∗ 30, 1; 32] 3 0
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ΘDZ =
ν1∑

j=2

(−2j2 + 2σj − σ)tj ≥
ν1∑

j=2

2j(j − 1)tj .

Thus, noting that

σ(d− 3)2 − (σ − 2)d2 + 4(σ − 2)σ = 2d2 − 6σd + (4σ + 1)σ,

we find the next formula:

2d2 − 6σd + (4σ + 1)σ = (σ − 2)∆ + ΘDZ , (13)

where ΘDZ =
∑ν1

j=2(−2j2 + 2σj − σ)tj .

Claim: If ΘDZ = 0 then ∆ ≥ 3.
Actually, ΘDZ = 0 implies r = 0. But, from 4δ = 1 + r + ∆ = 1 + ∆, it

follows that ∆ ≥ 3.

By the Claim, (σ − 2)∆ + ΘDZ > 0 and so

2d2 − 6σd + (4σ + 1)σ ≥ 1.

Moreover,

2d2 − 6σd + (4σ + 1)σ − 1
2

=
(2d− 4σ + 1)(2d− 2σ − 1)

2
≥ 1

2
.

Hence,

(2d− 4σ + 1)(2d− 2σ − 1) > 0. (14)

Therefore, we have either 2d ≤ 2σ + 1 or 2d ≥ 4σ − 1 and so we obtain either
1) σ ≥ d or 2) d ≥ 2σ.

5.1 Estimate of d

We shall show that d ≥ 2σ.
Actually, by Lemma 2 , we have either (1) σZ2 ≥ 2(σ − 2)g or (2) B = 1

and eZ2 ≥ 2(e− 3)g .

In the first case ,

σ(d− 3)2 = σZ2 ≥ 2(σ − 2)g = (σ − 2)(d(d− 3) + 2δ) ≥ (σ − 2)d(d− 3).

Therefore, 2d ≥ 3σ, and so σ ≤ 2d
3 ; hence by (14), we obtain d ≥ 2σ.
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In the second case , it follows that

e(d− 3)2 = eZ2 ≥ 2(e− 3)g = (e− 3)d(d− 3).

Hence, e(d− 3) ≥ (e− 3)d, which implies that d ≥ e = f + σ > σ. Therefore,

σ ≤ d− 1.

Hence, by (14), we obtain

2d− 4σ + 1 > 0; d ≥ 2σ.

Suppose that d = 2σ. Then the formula (12) turns out to be

2d2 − 6σd + (4σ + 1)σ = σ = (σ − 2)∆ + ΘDZ .

Since

σ = (σ − 2)∆ + ΘDZ ≥ ΘDZ ≥ (2ν1 − 1)σ − 2ν2
1 ,

it follows that

ν2
1 ≥ 2(ν1 − 1)ν1.

Hence, 2 ≥ ν1.

Assume that ν1 = 2. Then σ = 4, d = 8;ΘDZ = 4, t2 = 1, ∆ = 0. Hence,

D2 = σB̃ − 4 = d2 = 64.

Thus, B̃ = 17 and 17 = B̃ = 2f + 4B , which is a contradiction.
Assume that ν1 = 1. Then r = 0, 4δ = 1 + ∆ ≥ 4 and

σ = (σ − 2)∆ ≥ 3(σ − 2).

Hence, σ = 3, d = 6, e = 8, ∆ = 3 , which imply that the type is [3 ∗ 8, 1; 1].

Define k to be d− 2σ. Replacing d by 2σ + k, the formula (13) turns out to
be

2k2 + (2k + 1)σ = (σ − 2)∆ + ΘDZ . (15)

Since

2k2 + (2k + 1)σ ≥ (−2j2 + 2σj − σ), j = k + 2

it follows that σ ≤ 2(k2 + 2k + 2). Thus , we obtain the following tables using
computer.

By observing these tables, we obtain the following result.

Proposition 4 If D2 = d2 and Z2 = (d − 3)2 and (S, D) is not birationally
equivalent to pairs of the projective plane and non-singular curves, then

d ≥ 4ν1 + 3

except for the type [6 ∗ 25, 1; 35].
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Table 11: types in the case of D2 = d2 and Z2 = (d− 3)2 with k = 1, 2, 3

d [σ ∗ e , B;multiplicities] ν1 ∆
21 [10 ∗ 27, 1; 3] 3 0
10 [4 ∗ 16; 27] 2 0
16 [7 ∗ 23, 1; 3, 22] 3 0
18 [8 ∗ 21; 23] 2 0
42 [20 ∗ 54, 1; 4] 4 0
15 [6 ∗ 25, 1; 35] 3 0
21 [9 ∗ 26; 33] 3 0
21 [9 ∗ 31, 1; 42, 2] 4 0
25 [11 ∗ 35, 1; 4, 22] 4 0
29 [13 ∗ 33; 3, 22] 3 0
39 [18 ∗ 53, 1; 9] 9 0
45 [21 ∗ 59, 1; 23] 2 0
71 [34 ∗ 91, 1; 5] 5 0

5.2 Converse

By the same argument as in the previous section, we can show the converse.

Proposition 5 Suppose that nonnegative integers d, σ,∆, tj(j = 2, 3, · · · ) sat-
isfy that

2d2 − 6σd + (4σ + 1)σ = (σ − 2)∆ + ΘDZ (16)

and that ∆ + 1 + r is even.
Assume that there exists a minimal pair (S,D) obtained from a # minimal

model (ΣB , C) with type [σ ∗ e,B; ν1, ν1, · · · , νr] which corresponds to integers
d, σ,∆, tj(j = 2, 3, · · · ). Then Z2 = (d− 3)2.

Proof. By (14),

2d2 − 6σd + (4σ + 1)σ ≡ 2d2 + σ mod 2σ.

Hence,

2d2 + σ ≡ (σ − 2)∆ + (σ − 2)W − σU mod 2σ.

Thus

2(d2 + ∆ + W ) ≡ σ(∆ + W − U − 1) mod 2σ.

By the way,

W − U =
ν1∑

j=2

{j2 − (j − 1)2}tj
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and

W − U − r =
ν1∑

j=2

{j2 − (j − 1)2 − 1}tj ≡ 0 mod 2.

Therefore,

σ(∆ + W − U − 1) = σ(∆ + W − U − r) + σ(r − 1)
≡ σ(∆ + r − 1) mod 2σ.

However, since ∆ + 1 + r is even, it follows that

σ(∆ + r − 1) ≡ 0 mod 2σ.

So,

σ(∆ + W − U − 1) ≡ 0 mod 2σ. (17)

Therefore,

2(d2 + ∆ + W ) ≡ 0 mod 2σ,

which implies that
d2 + ∆ + W

σ
is an integer, which we denote by B̃0. Thus,

σB̃0 = d2 + ∆ + W. (18)

As in the previous sections, assume that there exists a minimal pair (S, D)
obtained from a # minimal model (ΣB , C) with type [σ ∗ e, B; ν1, ν1, · · · , νr] of
which B̃ equals B̃0 and the sequence of multiplicities ν2, ν3, · · · corresponds to
the sequence of t2, t3, · · · . Then

σB̃ = D2 + W,σB̃ = σB̃0 = d2 + ∆ + W.

Defining ε to be Z2 − (d− 3)2, we have

(σ − 2)(B̃ − 4) = (d− 3)2 + ε + U.

Multiplying the above formula by σ, we obtain

(σ − 2)(σB̃ − 4σ) = σ(d− 3)2 + σε + σU

and

(σ − 2)(σB̃ − 4σ) = (σ − 2)(D2 + W )− 4σ(σ − 2)

= (σ − 2)(d2 + ∆ + W )− 4σ(σ − 2).
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Therefore,

(σ − 2)(d2 + ∆ + W )− 4σ(σ − 2) = σ((d− 3)2 + ε) + σU.

Hence,

σε = 2d2 − 6σd + (4σ + 1)σ − (σ − 2)∆−ΘDZ .

However, the formula (16) implies that the right hand side vanishes. Hence,

σε = 0; ε = 0.

Therefore, Z2 = (d− 3)2 has been established.
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5.3 Numerical examples

Table 12: types in the case of D2 = d2 and Z2 = (d− 3)2 with 4 ≤ d ≤ 21

d [σ ∗ e , B;multiplicities] ∆ ν1

10 [4 ∗ 16; 27] 0 2
14 [4 ∗ 40; 231] 0 2
14 [5 ∗ 24; 211] 0 2
15 [5 ∗ 31, 1; 215] 0 2
16 [7 ∗ 23, 1; 3, 22] 0 3
17 [6 ∗ 29; 33, 28] 0 3
18 [4 ∗ 76; 271] 0 2
18 [6 ∗ 32; 215] 0 2
18 [7 ∗ 29, 1; 3, 26] 0 3
18 [8 ∗ 21; 23] 0 2
20 [6 ∗ 41; 223] 0 2
20 [7 ∗ 37, 1; 35, 26] 0 3
21 [5 ∗ 67, 1; 251] 0 2
21 [6 ∗ 47; 33, 224] 0 3
21 [6 ∗ 54; 323] 0 3
21 [7 ∗ 40, 1; 32, 213] 0 3
21 [8 ∗ 31; 4, 33, 23] 0 4
21 [9 ∗ 26; 33] 0 3
21 [9 ∗ 31, 1; 42, 2] 0 4

Observing these tables, we get the next result.

Theorem 5 (H.Yanaba) Suppose that Z2 = (d− 3)2 and D2 = d2.
If d = 4, 5, 7, 8, 9, 11, 12, 13, 19, then (S,D) is birationally equivalent to a pair

of P2 and a nonsingular curve.
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6 P3,1[D] and genus

Suppose that P3,1[D] = (d−7)(d−8)
2 for d ≥ 7, and δ = g − (d−1)(d−2)

2 ≥ 0 , g
being the genus of D. Then assume that a minimal pair (S, D) is not birationally
equivalent to (P2, Cd),Cd being a nonsingular curve. Then (S, D) is obtained
from a # minimal model (ΣB , C) of type [σ ∗ e,B; ν1, ν1, · · · , νr] by shortest
resolution of singularities of C. By the same argument as before,

(σ − 1)(B̃ − 2) = 2g + 2X. (19)

Moreover, assuming σ ≥ 6, we have 2P3,1[D]− 2 = (3Z − 2D)(2Z −D). Thus

(σ − 5)(B̃ − 10)− 2 = (3Z − 2D)(2Z −D) + 2Y. (20)

Here, Y =
∑ν1

j=2
(j−2)(j−3)

2 tj . Then

(σ − 5)(B̃ − 10) = (d− 7)(d− 8) + 2Y. (21)

Multiplying (21) by σ − 1 , we obtain

(σ − 5)(σ − 1)(B̃ − 2)− 8(σ − 1)(σ − 5)
= (σ − 1)(d− 7)(d− 8) + 2(σ − 1)Y.

From hypothesis, it follows that

(σ − 5)(σ − 1)(B̃ − 2) = (σ − 5)(d2 − 3d + 2) + 2δ(σ − 5) + 2X(σ − 5).

Hence, defining Θ31 to be (σ − 5)X − (σ − 1)Y , we have

Θ31 =
ν1∑

j=2

{σ(2j − 3)− 2j2 + 3}tj ≥ (σ − 5)t2

+
ν1∑

j=3

{2j(j − 3) + 3}tj .

Note that Θ31 = 0 implies r = 0.

Moreover,

(σ − 1)(d− 7)(d− 8)− (σ − 5)(d2 − 3d + 2) + 8(σ − 1)(σ − 5)

= 2d2 − 6σd + 4σ2 + 3σ − 3.

Consequently,

2d2 − 6σd + 4σ2 + 3σ − 3 = δ(σ − 5) + Θ31. (22)
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So,
2d2 − 6σd + 4σ2 + 3σ − 3 ≥ 0.

However,

2d2 − 6σd + 4σ2 + 3σ − 3

= 2d2 − 6σd + 4σ2 + 3σ − 9
2
− 1

2

=
(2d− 4σ + 3)(2d− 2σ − 3)

2
− 1

2
≥ 0.

Hence, (2d− 4σ + 3)(2d− 2σ − 3) > 0.
Therefore, we have either σ > 2d−3

2 or σ < 2d+3
4 . From σ > 2d−3

2 , it follows
that d ≤ σ + 1. Similarly, σ < 2d+3

4 implies d ≥ 2σ − 1.

6.1 Estimate of d

We shall verify that if d ≤ σ + 1 then d = σ + 1 and the type is either 1)
[6 ∗ 8, 1; 2r], r ≤ 5, d = 7 or 2) [7 ∗ 9, 1; 2r], r ≤ 6, d = 8. Otherwise, d ≥ 2σ.

Actually, assuming d ≤ σ + 1, by Lemma 1 we have either (1) |σZ − (σ −
2)D| 6= ∅ or (2) B = 1, 2f < σ and |eZ − (e− 3)D| 6= ∅ .

In the first case, since σ ≥ 4, it follows that 2Z −D is nef. Hence,

(σZ − (σ − 2)D) · (2Z −D) ≥ 0

and

2σZ2 + (σ − 2)D2 + 2(4− 3σ)g ≥ 0. (23)

By hypothesis,

6Z2 + 2D2 − 14g = (d− 7)(d− 8). (24)

Eliminating D2 from these two formulas, we obtain

(6− σ)Z2 +
(σ − 2)(d− 7)(d− 8)

2
≥ (6− σ)g.

Hence,

(σ − 2)(d− 7)(d− 8)
2

≥ (σ − 6)(Z2 − g).

But by Lemma 2,

σZ2 ≥ 2(σ − 2)g

and so

Z2 ≥ 2(1− 2
σ

)g.
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Therefore,

(σ − 6)(Z2 − g) ≥ (σ − 6)(1− 4
σ

)g.

Hence,

σ(σ − 2)(d− 7)(d− 8) ≥ (σ − 4)(σ − 6)d(d− 3). (25)

Defining a quadratic equation F (x) by

σ(σ − 2)(x− 7)(x− 8)− (σ − 4)(σ − 6)x(x− 3),

we shall verify that if F (d) ≥ 0 then d ≥ σ + 1.
This follows from observing Figure 1 which is the figure of curves defined by

x(x− 2)(y − 7)(y − 8) = (x− 4)(x− 6)y(y − 3), x = 6, y = 6, y = x + 1.
If d = σ + 1 then the formula (23) induces

(d− 1)(d− 3)(d− 7)(d− 8) ≥ (d− 5)(d− 7)d(d− 3),

which implies either d = 7 or

(d− 1)(d− 8) ≥ d(d− 5).

Then −9d + 8 ≥ −5d; 2 ≥ d. But this is impossible.

If d = 7 then σ = 6 and by (21) we have B̃ = 10. Hence, the type becomes
[6 ∗ 8, 1; 2r].

In the second case, since |eZ − (e − 3)D| 6= ∅ and 2Z −D is nef for σ ≥ 4,
it follows that

(eZ − (e− 3)D) · (2Z −D) ≥ 0.

Therefore,

2eZ2 + (e− 3)D2 + 2(6− 3e)g ≥ 0. (26)

Recalling (24), we obtain

(9− e)Z2 +
(d− 7)(d− 8)(e− 3)

2
≥ (9− e)g.

Hence,

(d− 7)(d− 8)(e− 3)
2

≥ (e− 9)(Z2 − g). (27)
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Figure 1: x(x− 2)(y− 7)(y− 8) = (x− 4)(x− 6)y(y− 3), x = 6, y = 6, y = x+1
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But by Lemma2,

Z2 − g ≥ e− 6
e

g ≥ (e− 6)d(d− 3)
2e

.

Combining this with (26), we obtain

e(e− 3)(d− 7)(d− 8) ≥ (e− 6)(e− 9)d(d− 3). (28)

Noting that d ≥ 8 and e ≥ 9, we have the next figure of curves.

0 12.5 25 37.5 50
0

12.5

25

37.5

50

x

y

Figure 2: x(x− 3)(y− 7)(y− 8) = (x− 6)(x− 9)y(y− 3), x = 9, y = 8, y = x− 1

Observing Figure 2, we get d ≥ e− 1. Since e ≥ σ + ν1, we get

d ≥ e− 1 = f + σ − 1 ≥ f + σ − 1 ≥ σ + ν1 − 1.
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Suppose that d = σ + 1. Then d = e− 1 and by (27) ,we obtain

e(e− 3)(e− 8)(e− 9) ≥ (e− 6)(e− 9)(e− 1)(e− 4).

Hence, either e = 9 or

e(e− 3)(e− 8) ≥ (e− 6)(e− 1)(e− 4).

This induces 24 ≥ 10e; hence, 2 ≥ e, which is a contradiction. Thus e = 9 and
so d = 8, σ = 7 and the type is [7 ∗ 9, 1; 2r], where r ≤ 6, d = 7.

Given d and σ, one can enumerate δ, t2, t3, · · · satisfying the following for-
mula:

(σ − 5)δ + Θ31 = (σ − 5)(δ + t2 + 3t3) + (5σ − 29)t4 + · · · .

Since δ + t2 + 3t3 is invariant, if d and σ are given,then in the following table
t3 = 0, δ = 0 is assumed. For example,if the type [8∗ 17;27] is given, other types
such as [8∗ 17;3t3 , 2t2 ] with 7 = δ + t2 + 3t3 exist.
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6.2 Numerical examples

Table 13: types where 2P3,1[D] = (d − 7)(d − 8), 2g = (d − 1)(d − 2) with
7 ≤ d ≤ 19 and t3 = 0, δ = 0

d [σ ∗ e , B;multiplicities] ν1 δ
7 [6 ∗ 8; 25] 2 0
8 [7 ∗ 9; 26] 2 0
11 [6 ∗ 11; 25] 2 0
12 [6 ∗ 15; 215] 2 0
13 [6 ∗ 20; 229] 2 0
13 [7 ∗ 16, 1; 23] 2 0
14 [6 ∗ 26; 247] 2 0
14 [7 ∗ 19, 1; 29] 2 0
15 [6 ∗ 33; 269] 2 0
15 [7 ∗ 19; 217] 2 0
16 [6 ∗ 41; 295] 2 0
16 [7 ∗ 23; 227] 2 0
16 [8 ∗ 17; 27] 2 0
17 [6 ∗ 50; 2125] 2 0
17 [7 ∗ 31, 1; 239] 2 0
17 [8 ∗ 20; 213] 2 0
17 [8 ∗ 21; 43, 22] 4 0
18 [6 ∗ 60; 2159] 2 0
18 [7 ∗ 36, 1; 253] 2 0
18 [8 ∗ 24; 42, 213] 4 0
18 [8 ∗ 25; 45, 22] 4 0
18 [9 ∗ 19; 4, 22] 4 0
19 [6 ∗ 71; 2197] 2 0
19 [7 ∗ 38; 269] 2 0
19 [8 ∗ 27; 229] 2 0
19 [8 ∗ 28; 43, 218] 4 0
19 [8 ∗ 29; 46, 27] 4 0
19 [9 ∗ 26, 1; 211] 2 0
19 [9 ∗ 22; 42, 23] 4 0
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Table 14: types where 2P3,1[D] = (d − 7)(d − 8), 2g = (d − 1)(d − 2) with
20 ≤ d ≤ 21, and t3 = 0, δ = 0

d [σ ∗ e , B;multiplicities] ν1 δ
20 [6 ∗ 83; 2239] 2 0
20 [7 ∗ 44; 287] 2 0
20 [8 ∗ 31; 239] 2 0
20 [8 ∗ 32; 43, 228] 4 0
20 [8 ∗ 33; 46, 217] 4 0
20 [8 ∗ 34; 49, 26] 4 0
20 [9 ∗ 29, 1; 217] 2 0
20 [9 ∗ 25; 42, 29] 4 0
20 [9 ∗ 30, 1; 44, 2] 4 0
21 [6 ∗ 96; 2285] 2 0
21 [7 ∗ 54, 1; 2107] 2 0
21 [8 ∗ 36; 42, 243] 4 0
21 [8 ∗ 37; 45, 232] 4 0
21 [8 ∗ 38; 48, 221] 4 0
21 [8 ∗ 39; 411, 210] 4 0
21 [9 ∗ 28; 4, 220] 4 0
21 [9 ∗ 33, 1; 43, 212] 4 0
21 [9 ∗ 29; 45, 24] 4 0
21 [10 ∗ 24; 5, 4, 2] 5 0
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7 P2,1[D] and P3,1[D]

Suppose that a minimal pair (S,D) satisfies that P2,1[D] ≥ (d−4)(d−5)
2 and

P3,1[D] = (d−7)(d−8)
2 for d > 6 that is not birationally equivalent to (P2, Cd),Cd

being a nonsingular curve. Then (S,D) is obtained from a # minimal model
(ΣB , C) of type [σ ∗ e,B; ν1, ν1, · · · , νr] by shortest resolution of singularities of
C. Then defining ∆21 to be P2,1[D]− (d−4)(d−5)

2 ≥ 0,

(σ − 3)(B̃ − 6) = (d− 4)(d− 5) + 2∆21 + 2V. (29)

Here, V =
∑ν1

j=2
(j−2)(j−1)

2 tj . Moreover,

(σ − 5)(B̃ − 10) = (d− 7)(d− 8) + 2Y. (30)

Here, Y =
∑ν1

j=2
(j−2)(j−3)

2 tj .
Then multiplying (27) by σ − 3, we obtain

(σ − 3)(σ − 5)(B̃ − 10) = (σ − 3)(d− 7)(d− 8) + 2(σ − 3)Y. (31)

By (26),

(σ − 3)(σ − 5)(B̃ − 10)

= (σ − 3)(σ − 5)(B̃ − 6)− 4(σ − 3)(σ − 5)
= (σ − 5)((d− 4)(d− 5) + 2∆21 + 2V ) + (σ − 5)∆21 − 4(σ − 3)(σ − 5).

Hence,

(σ − 3)(d− 7)(d− 8) + 2(σ − 5)Y
= (σ − 5)((d− 4)(d− 5) + 2V ) + (σ − 5)∆21 − 4(σ − 3)(σ − 5).

Therefore, defining Θ32 to be (σ − 3)V − (σ − 5)Y , we obtain

(d− σ − 2)(d + 2− 2σ) = (σ − 5)∆21 + Θ32. (32)

Here, Θ32 =
∑ν1

j=3(j − 2)(σ − j − 2)tj = (σ − 5)t3 + 2(σ − 6)t4 + · · · .
Since Θ32 ≥ 0, it follows that

(d− σ − 2)(d + 2− 2σ) ≥ 0.

Thus either d ≤ σ + 2 or d ≥ 2σ − 2.

Note that if (σ − 5)∆21 + Θ32 = 0 and σ ≥ 6 then ∆21 = 0 and ν1 ≤ 2.
Moreover, in this case, we have two cases: d = σ + 2 or d = 2σ − 2.
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If σ = d− 2, then the type becomes [σ ∗ (σ + 2), 1; 2r].

If σ = d+2
2 , then d = 2σ − 2 and from the formula

(σ − 3)(B̃ − 6) = (d− 4)(d− 5) + 2V = 2(σ − 3)(2σ − 7)

it follows that B̃ = 4σ − 8.
When B = 0, we have f = 2σ − 4. The type becomes [σ ∗ 2(σ − 2); 2r].
When B = 1, we have 2f = 3σ − 8. Then σ is even and the type becomes

[σ ∗ 5σ−8
2 , 1; 2r].

7.1 Estimate of d

We shall verify that if σ ≥ d− 2, then B = 1, f = 2, d = σ + 2 and the type is
[(d− 2) ∗ d, 1; 2r].

Actually, P2,1[D] = (d−4)(d−5)
2 and P3,1[D] = (d−7)(d−8)

2 imply

(2Z −D) · Z = (d− 3)(d− 6), (3Z − 2D) · (2Z −D) = (d− 9)(d− 6). (33)

By Lemma 1, we have the following two cases.

case (1): |σZ − (σ − 2)D| 6= ∅.
In this case, from

αZ + β(3Z − 2D) = σZ − (σ − 2)D,

we obtain

α =
6− σ

2
, β =

σ − 2
2

.

Since 2Z −D is nef for σ ≥ 4, it follows that

(σZ − (σ − 2)D) · (2Z −D) ≥ 0.

Hence,

(σZ − (σ − 2)D) · (2Z −D)
= (αZ + β(3Z − 2D)) · (2Z −D)
= αZ · (2Z −D) + β(3Z − 2D) · (2Z −D)
= α(d− 3)(d− 6) + β(d− 6)(d− 9)

=
6− σ

2
(d− 3)(d− 6) +

σ − 2
2

(d− 6)(d− 9)

≥ 0.

By d > 6, we obtain 2d− 3σ ≥ 0. Hence, σ ≤ 2d
3 .
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By hypothesis, σ ≥ d − 2. Thus 2d
3 ≥ d − 2 ,which induces d ≤ 6. This

contradicts the hypothesis that d > 6.

case (2): B = 1, 2f < σ and |eZ − (e− 3)D| 6= ∅ .
Then solving the following equation:

αZ + β(3Z − 2D) = eZ − (e− 3)D,

we obtain

α =
9− σ

2
, β =

e− 3
2

.

Since 2Z −D is nef for σ ≥ 4, it follows that

(eZ − (e− 3)D) · (2Z −D) ≥ 0.

By the same argument as before, we conclude that d ≥ e.
But by hypothesis,σ ≥ d− 2.
On the other hand, e = f + σ ≥ ν1 + σ. Thus d ≥ e ≥ ν1 + σ; thus

σ ≥ d− 2 ≥ ν1 + σ − 2. Hence, ν1 = 1, 2.
If ν1 = 1 then f ≥ 2 by # minimality and hence, e− σ = 2 and f = 2. The

type becomes [σ ∗ (σ+2), 1; 1]. Contracting ∆∞ into a point, we have a singular
plane curve with only one double point.

If ν1 = 2 then e − σ = 2, f = 2. In this case, The type becomes [σ ∗ (σ +
2), 1; 2r]. Contracting ∆∞ into a point, we have a singular plane curve with
r + 1 double points.

Apart from this case , we have d ≥ 2σ − 1.

7.2 Numerical examples
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Table 15: types in which P2,1[D] ≥ (d−4)(d−5)
2 and P3,1[D] = (d−7)(d−8)

2 with
10 ≤ d ≤ 21 and ∆21 = t2 = 0

d [σ ∗ e , B;multiplicities] ν1

10 [6 ∗ 8; 1] 1
11 [6 ∗ 11; 33] 3
12 [6 ∗ 15; 38] 3
12 [7 ∗ 10; 1] 1
13 [6 ∗ 20; 315] 3
13 [7 ∗ 16, 1; 32] 3
14 [6 ∗ 26; 324] 3
14 [7 ∗ 19, 1; 35] 3
14 [8 ∗ 12; 1] 1
15 [6 ∗ 33; 335] 3
15 [7 ∗ 19; 39] 3
16 [6 ∗ 41; 348] 3
16 [7 ∗ 23; 314] 3
16 [8 ∗ 17; 34] 3
16 [8 ∗ 18; 43] 4
16 [9 ∗ 14; 1] 1
17 [6 ∗ 50; 363] 3
17 [7 ∗ 31, 1; 320] 3
17 [8 ∗ 20; 37] 3
17 [8 ∗ 21; 43, 33] 4
17 [9 ∗ 21, 1; 4] 4
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Table 16: types in which P2,1[D] ≥ (d−4)(d−5)
2 and P3,1[D] = (d−7)(d−8)

2 with
18 ≤ d ≤ 20, t2 = 0

d [σ ∗ e , B;multiplicities] ν1

18 [6 ∗ 60; 380] 3
18 [7 ∗ 36, 1; 327] 3
18 [8 ∗ 24; 42, 38] 4
18 [8 ∗ 25; 45, 34] 4
18 [8 ∗ 26; 48] 4
18 [9 ∗ 19; 4, 32] 4
18 [10 ∗ 16; 1] 1
19 [6 ∗ 71; 399] 3
19 [7 ∗ 38; 335] 3
19 [8 ∗ 27; 315] 3
19 [8 ∗ 28; 43, 311] 4
19 [8 ∗ 29; 46, 37] 4
19 [8 ∗ 30; 49, 33] 4
19 [9 ∗ 26, 1; 36] 3
19 [9 ∗ 22; 42, 33] 4
19 [9 ∗ 27, 1; 44] 4
20 [6 ∗ 83; 3120] 3
20 [7 ∗ 44; 344] 3
20 [8 ∗ 31; 320] 3
20 [8 ∗ 32; 43, 316] 4
20 [8 ∗ 33; 46, 312] 4
20 [8 ∗ 34; 49, 38] 4
20 [8 ∗ 35; 412, 34] 4
20 [8 ∗ 36; 415] 4
20 [9 ∗ 29, 1; 39] 3
20 [9 ∗ 25; 42, 36] 4
20 [9 ∗ 30, 1; 44, 33] 4
20 [9 ∗ 26; 46] 4
20 [10 ∗ 21; 42] 4
20 [11 ∗ 18; 1] 1
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